

Superion[®]

Solid Carbide Drilling Tools

Out of the Box *Solutions* The Superion Philosophy

Superion became a subsidiary of Allied Machine and Engineering in 2016. We share a common mission to provide product excellence, expert technical support, and innovative holemaking solutions to our metal-cutting partners. As Superion's foundation was built on serving partners in the automotive industry and other lean manufacturing, we remain firmly rooted in a tradition of process improvements and capabilities.

We have strengthened these roots while growing to serve the unique cutting tool needs of new industries such as aerospace, defense, equipment testing, material processing, and more.

With significant investment in technology, Superion has opened the door for our team to manufacture new solutions including several carbide and PCD configurations. We focus on providing solutions that reduce our customers' costs, increase throughput and assist in developing processes that allow for consistent and repeatable performance.

Material-specific coatings / geometries

Reduce setup times

Decrease cost per hole

Applicable Industries

Firearms

Machining

Energy

Your safety and the safety of others is very important. This catalog contains important safety messages. Always read and follow all safety precautions.

This triangle is a safety hazard symbol. It alerts you to potential safety hazards that can cause tool failure and serious injury.

When you see this symbol in the catalog, look for a related safety message that may be near this triangle or referred to in the nearby text.

There are safety signal words also used in the catalog. Safety messages follow these words.

WARNING

WARNING (shown above) means that failure to follow the precautions in this message could result in tool failure and serious injury.

NOTICE means that failure to follow the precautions in this message could result in damage to the tool or machine but not result in personal injury.

NOTE and **IMPORTANT** are also used. These are important that you read and follow but are not safety-related.

Visit www.alliedmachine.com for the most up-to-date information and procedures.

Aerospace

Superion[®] Drills Contents

Reference Icons

The following icons will appear throughout the catalog to help you navigate between products.

Setup / Assembly Information

Detailed instructions and information regarding the corresponding part(s)

Recommended Cutting Data Speed and feed recommendations for optimum and safe drilling

Introduction Information

Superion Capabilities.	 	 	 	 2
Superion Applications.	 	 	 	 3
Case Studies .		 	 	 4 - 5
Superion Geometries .		 	 	 6 - 7

Recommended Cutting Data

Imperial (inch)	8 - 11
Metric (mm)	12 - 15

- Coolant Recommendations 16
- Deep Hole Drilling Guidelines 17

 - Superion Quote Form 20

Superion Capabilities

WHAT IS SUPERION?

Superion capabilities provide cutting edge solutions in both solid carbide and PCD tooling.

WHY SHOULD YOU USE SUPERION?

- State-of-the-art manufacturing automation allows for high repeatability and consistency, regardless of the quantity you need.
- Superion provides application-specific solutions tailored to meet your toughest demands.
- Superion tooling excels in difficult and unique material applications.
- Our goal is to provide you a quality solution to exceed your need on a schedule that satisfies.

WHEN SHOULD YOU USE SUPERION?

- When finish is critical and dimensions are tight, Superion will deliver a tool to maintain your tolerances.
- When your tooling budget requires regrinds and the ability to remanufacture, Superion tackles your needs.
- If you're dealing with CFRP or other unique materials, Superion tooling is the right solution.

Α

В

FROM CONCEPT TO REALITY

Allied's team of engineers is ready to assist you with your application. We'll gather all the information we need about your application and turn your concept into reality. Give us a call today to collaborate with you. We'll listen to your needs, formulate a concept, develop the model, and build the solution.

manufacturing facility, built specifically to satisfy

solutions to your production needs.

the customer's need whether it's 10 drills or 1,000 drills. Superion will provide consistent and effective

Α

Case Study

If you need to hold a tight tolerance, we have the solution.

When an application requires you to hold a tight tolerance, it quickly eliminates many tooling options because those options aren't capable of holding the strict tolerance. Our customer was using a solid carbide drill to machine cylinder heads for the automotive industry. The cylinder blocks were made from A356 aluminum.

When the end user raised concerns over the hole tolerance created by our customer's previous tooling, our customer changed the required tolerance from ±.0005" (±.013 mm) to ±.0003" (±.009 mm). However, the previous tooling couldn't achieve the new tolerance requirements.

The customer tested the **Superion Solid Carbide Step Burnishing Drill** in this application. The Superion drill did exactly what the customer needed and successfully held the new tolerance of \pm .0003" (\pm .009 mm). It also held the new tolerance with a 1.66 CPK, which was higher than the previous tool's CPK even at the initial \pm .0005" (\pm .013 mm) tolerance.

Don't tolerate tolerance issues. Call us to help you find the right tool for the job.

		Measure	Superion* Step Burnishing Drill		
Product:	Superion [®] Step Burnishing Drill	RPM	3,490		
Objectives:	Achieve required tolerance	Speed	528 SFM (160.1 M/min)		
Industry: Part:	Automotive Cylinder head	Feed	0.0115 IPR (0.29 mm/rev)		
Material:	A356 aluminum	Penetration Rate	43 IPM (1,100 mm/min)		
Hole Ø:	0.579" (14.70 mm)	Cycle Time	4 sec		
Hole Depth:	1.181" (30.00 mm)	Tool Life	3,000 parts		
		Tolerance	±0.0003" (±0.009 mm)		

Superion Superion Step Burnishing Drill

SPECIALS

Case Study: CS0503

Α

В

BORING

С

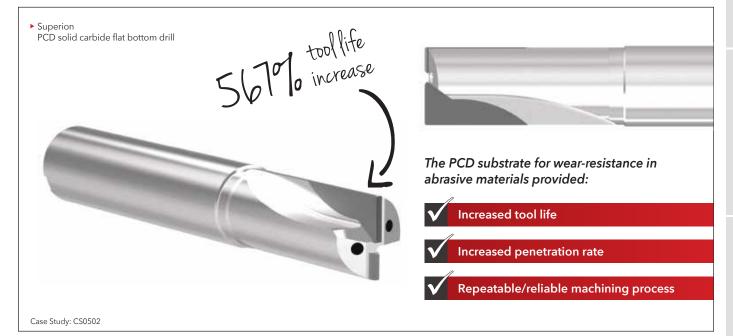
D

BURNISHING

Case Study

Old adage, modern innovation: the right tool for the job.

Reduce costs and eliminate headaches by calling us to help solve your challenges. If your current process doesn't seem to be providing the results you want, you might be using the wrong tooling. Our customer was using a diamond-coated end mill to machine guide pads on frac pocket plugs used in down-hole oil drilling. The guide pads were made from fiberglass and glass wound filament material, which is very abrasive and shortens the life of cutting tools.


When the diamond coating wore off the end mill, the carbide substrate was exposed directly to the abrasive material, and the tool would quickly fail. The customer needed an optimized tool to extend tool life in this abrasive material and to solidify the repeatability of the process.

The customer tested the **Superion**[®] **PCD Flat Bottom Drill** in this application. The PCD substrate is more wear-resistant in the fiberglass material and provided more even wear of the tool throughout the process. Much to the customer's delight, the Superion drill ran at a higher penetration rate, which shortened cycle time. Most importantly, the Superion drill increased the customer's tool life from 7,500 holes to 50,000 holes (*a 567% increase*).

A costly application became effective and worry-free by finding the right tooling. The Superion drill didn't just increase the customer's tool life; it provided a repeatable, reliable process so the customer could "set it and forget it."

Don't tolerate unnecessary hassle and stress in your production. *Call us to help you find the right tool for the job.*

Product:	Superion [®] PCD Flat Bottom Drill	Measure	Diamond Coated End Mill	Superion [*] PCD Flat Bottom Drill
Objectives:	Increase tool life	DDM		7500
Industry:	Oil & gas/petrochemical	Speed	448 SFM (136.55 M/min)	746 SFM (227.381 M/min)
Part:	Frac pocket plug guide pads	Feed Rate	0.008 IPR (0.203 mm/rev)	0.008 IPR (0.203 mm/rev)
Material: Hole Ø:	Fiberglass and glass wound filament 0.380" (9.652 mm)	Penetration Rate	36 IPM (914.4 mm/min)	60 IPM (1524 mm/min)
Hole Depth:	0.375" (6.985 mm)	Cycle Time	0.46 sec	0.28 sec
		Tool Life	7,500 holes	50,000 holes

Α

В

Superion Geometries

There's a Geometry for That

Allied Machine knows there isn't a one-size-fits-all solution when it comes to holemaking. To better accommodate the countless holes our customers drill, we offer multiple options in material-specific geometries and material-specific coatings.

Superion geometries feature a unique edge prep tailored to specific material groups to optimize tool life and edge strength. Some geometries also offer solutions for rough and finish burnishing.

If you're unsure which geometry would be best for your application, give our Application Engineers a call. They're standing by, ready to help.

- 🌜 1.330.343.4283 ext: 7611
- 💺 1.800.321.5537 (toll free United States and Canada)
- appeng@alliedmachine.com

HPM

- Linear cutting edge aids in corner strength and improves chip formation in softer materials
- · Free cutting primary and secondary clearance
- Ideal for drilling softer carbon, alloy and tool steel materials
- AM420 coating for enhanced heat thresholds and tool life
- · TiCN coating for use in aluminum bronze

HPS

- · Radius cutting edge for improved chip formation
- Cam ground clearance for added point strength • and stability
- Reduced bell mouth for longer drill depths
- OD flute edge prep for added corner strength •
- Ideal for drilling harder steels, high-temp alloys, and stainless
- AM420 coating for enhanced heat thresholds and tool life in steels
- AM460 coating provides industry leading tool life in stainless and HRSA materials with our highest heat threshold coating available

- Optimized core, point, and web features for • increased strength
- · Utilizes a single margin design with straight flutes
- · Ideal for drilling hardened steels and wear plates
- AM420 coating for enhanced heat thresholds and tool life

HPM2M

- HPM geometry with a double margin
- Recommended for improved hole tolerance and hole finish
- Recommended for interrupted cuts and drill depths greater than 8xD
- Double margins are optimized with a unique web for full engagement of all four margins at entry, leading to better stability
- AM420 coating for enhanced heat thresholds and tool life

HPS2M

- HPS geometry with a double margin
- Recommended for improved hole tolerance and hole finish
- Recommended for interrupted cuts and drill depths greater than 8xD
- Double margins are optimized with a unique web for full engagement of all four margins at entry, leading to better stability
- Ideal for drilling gray/white and SG/nodular cast iron
- AM420 coating for enhanced heat thresholds and tool life in steels
- AM440 coating for reduced flank wear in cast irons
- AM460 coating provides industry leading tool life in stainless and HRSA materials with our highest heat threshold coating available

HPF

- Unique open geometry for high penetration rates specifically tailored for aluminum
- Double margins are optimized with a unique web for full engagement of all four margins at entry, leading to better stability
- Reduced helix angle for increased chip evacuation
- Enhanced surface finish on tool to improve chip flow and reduce built-up edge
- High lubricity TiCN coating for use in cast/wrought aluminum

С

Е

A15: 6

BORING

B

THREADING

DRILLING

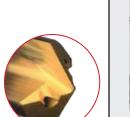
Α

Superion Geometries

CIB (cast iron burnishing drill)

- Unique point, web, and cutting edge designed to significantly improve hole finish and hole tolerance
- Double margins designed for enhanced stability
- Minimized back taper to enhance straightness
- Ideal pre-drill when using carbide taps
- Straight flute design ideal for use on lathes
- Enhanced surface finish on tool to improve chip flow and reduce built-up edge
- AM440 coating for reduced flank wear in cast irons

CAB (cast aluminum burnishing drill)


- Unique point, web, and cutting edge designed to significantly improve hole finish and hole tolerance
- Straight flute design ideal for use on lathes
- Double margins designed for enhanced stability
- Minimized back taper to enhance straightness
- Enhanced surface finish on tool to improve chip flow and reduce built-up edge
- TiCN coating to enhance lubricity when drilling in aluminum

WAB (wrought aluminum burnishing drill)

- Unique point, web, and cutting edge designed to significantly improve hole finish and hole tolerance
- Straight flute design ideal for use on lathes
- Double margins designed for enhanced stability
- Minimized back taper to enhance straightness
- Geometry enhancements for drilling wrought aluminum
- Enhanced surface finish on tool to improve chip flow and reduce built-up edge
- TiCN coating to enhance lubricity when drilling in aluminum

BCB (brass copper burnishing drill)

- Straight flute design ideal for use on lathes
- Double margins designed for enhanced stability
- Minimized back taper to enhance straightness
- Geometry enhancements for drilling brass and copper
- Enhanced surface finish on tool to improve chip flow and reduce built-up edge
- TiN coating

FEATURES THAT WORK

STEP DRILL DUB OFF

We have the solution when you have:

- Difficulties with chip formation on step tools.
- Chips wrapping around the tool even with peck cycles.
- To use multiple diameter drills.

Superion solid carbide step drills *now include* dub off.


without dub off

with dub off

Hardened 4150

without dub off

with dub off

Ductile Iron

without dub off

Soft 1018

without dub off

with dub off

with dub off

Recommended Drilling Data | Imperial (inch)

							Feed Rate (IPF	l) by Diameter
ISO	Material	Hardness (BHN)	General Application Geometry	Special Geometry*	Coating	Speed (SFM)	0.118 - 0.157	0.157 - 0.197
	Free Machining Steel	100 - 150	HPM	HPM2M	AM420	500	0.006	0.007
	1118, 1215, 12L14, etc.	150 - 200	HPM	HPM2M	AM420	475	0.005	0.0065
		200 - 250	HPS	A HPS2M	AM420	450	0.004	0.006
	Low Carbon Steel	85 - 125	HPM	HPM2M	AM420	455	0.006	0.007
	1010, 1020, 1025,	125 - 175	HPM	HPM2M	AM420	440	0.006	0.0065
	1522, 1144, etc.	175 - 225	HPM	HPM2M	AM420	425	0.005	0.006
		225 - 275	HPS	A HPS2M	AM420	410	0.0045	0.006
	Medium Carbon Steel	125 - 175	HPM	HPM2M	AM420	440	0.0055	0.006
	1030, 1040, 1050, 1527,	175 - 225	HPM	HPM2M	AM420	430	0.005	0.0055
	1151, etc.	225 - 275	HPS	A HPS2M	AM420	400	0.0045	0.005
		275 - 325	HPS	A HPS2M	AM420	375	0.004	0.005
P	Alloy Steel	125-175	HPM	HPM2M	AM420	405	0.0055	0.006
٢	4140, 5140, 8640, etc.	175-225	HPM	HPM2M	AM420	380	0.005	0.0055
		225-275	HPS	A HPS2M	AM420	365	0.004	0.005
		275-325	HPS	A HPS2M	AM420	340	0.004	0.005
		325-375	HP106	-	AM420	325	0.0035	0.0045
	High Strength Alloy	225 - 300	HPS	A HPS2M	AM420	340	0.004	0.005
	4340, 4330V, 300M, etc.	300 - 350	HPS	A HPS2M	AM420	320	0.004	0.005
		350 - 400	HP106	-	AM420	250	0.0035	0.004
	Structural Steel	100 - 150	HPS	A HPS2M	AM420	450	0.0055	0.0065
	A36, A285, A516, etc.	150 - 250	HPS	A HPS2M	AM420	425	0.0045	0.0055
		250 - 350	HPS	A HPS2M	AM420	390	0.004	0.005
	Tool Steel	150 - 200	HPM	HPM2M	AM420	270	0.0045	0.0045
	H-13, H-21, A-4, 0-2, S-3, etc.	200 -250	HPS	A HPS2M	AM420	250	0.004	0.004
	High Temp Alloy	140-220	HPS	_	AM460	110	0.003	0.003
	Hastelloy B, Inconel 600, etc.	220-310	HPS	-	AM460	100	0.002	0.002
S	Titanium Alloy	140-220	HPS	-	AM460	150	0.0025	0.003
3		220-310	HPS	-	AM460	120	0.002	0.0025
	Aerospace Alloy	185-275	HPS	-	AM460	160	0.003	0.003
	S82	275-350	HPS	-	AM460	130	0.002	0.002

*Special Geometry

Use HPM2M for greater drill depths over 8xD. HPM2M is used for any interruptions and produces a better hole tolerance and finish in comparison to HPM.

Use HPS2M for greater drill depths over 8xD. HPS2M is used for any interruptions and produces a better hole tolerance and finish in comparison to HPS.

Parameter Reductions for Length to Diameter Relationships							
6xD	0.90 reduction for speed and feed adjustment						
<u></u>	0.80 reduction for speed and feed adjustment						
<u> </u>	0.70 reduction for speed and feed adjustment						
🛝 15xD - 20xD	0.60 reduction for speed and feed adjustment						

Flood Coolant Applications

Recommend if diameter to depth is less than or equal to three times the diameter. Reduce speed by 20% and if needed drop feed by 10% to maintain optimal chip formation

Parameter Recommendations for Step Drills

- Feed rate is based off the pilot diameter
- Speed rate is based off the largest step diameter

1. WARNING Refer to Speed and Feed charts for recommended adjustments to speeds and feeds. Refer to page A15: 17 for deep hole drilling guidelines in this section of the catalog. Visit www.alliedmachine.com/DeepHoleGuidelines for the most up-to-date information and procedures. Factory technical assistance is available for your specific applications through our Application Engineering Team. *ext:* 7611 | *email:* appeng@alliedmachine.com

IMPORTANT: The speeds and feeds listed above are a general starting point for all applications. Refer to the Coolant Recommendation charts for coolant requirements to run at the recommended speeds and feeds. Factory technical assistance is also available through our Application Engineering Team. *ext:* **7611** | *email:* **appeng@alliedmachine.com**

DRILLING

В

BORING

С

REAMING

D

BURNISHING

	Feed Rate (IPR) by Diameter									
0.197 - 0.236	0.236 - 0.276	0.276 - 0.315	0.315 - 0.394	0.394 - 0.472	0.472 - 0.551	0.551 - 0.630	0.630 - 0.709	0.709 - 0.787		
0.008	0.009	0.010	0.012	0.013	0.015	0.017	0.018	0.020		
0.0075	0.0085	0.0095	0.011	0.012	0.014	0.016	0.017	0.019		
0.007	0.008	0.009	0.010	0.011	0.013	0.015	0.016	0.018		
0.008	0.009	0.010	0.012	0.0135	0.0145	0.0165	0.0175	0.0195		
0.0075	0.0085	0.0095	0.0115	0.013	0.014	0.016	0.017	0.019		
0.007	0.008	0.009	0.011	0.0125	0.0135	0.015	0.016	0.018		
0.007	0.008	0.009	0.010	0.012	0.013	0.015	0.016	0.018		
0.007	0.0075	0.009	0.011	0.012	0.013	0.0145	0.016	0.0175		
0.006	0.007	0.0085	0.0105	0.0115	0.0125	0.014	0.0155	0.017		
0.006	0.007	0.0085	0.0105	0.011	0.0125	0.0135	0.0145	0.0165		
0.0055	0.0065	0.008	0.010	0.011	0.012	0.013	0.014	0.016		
0.0065	0.0075	0.0085	0.0105	0.0115	0.013	0.0145	0.016	0.017		
0.006	0.007	0.008	0.010	0.011	0.0125	0.014	0.0155	0.0165		
0.006	0.0065	0.008	0.0095	0.0105	0.012	0.0135	0.0145	0.0155		
0.0055	0.006	0.0075	0.009	0.010	0.0115	0.013	0.014	0.015		
0.005	0.0055	0.007	0.009	0.010	0.011	0.0125	0.0135	0.0145		
0.006	0.0065	0.008	0.0095	0.0105	0.012	0.0135	0.0145	0.0155		
0.0055	0.006	0.0075	0.009	0.01	0.0115	0.013	0.014	0.015		
0.0045	0.0055	0.0065	0.008	0.0085	0.010	0.011	0.012	0.013		
0.007	0.008	0.0095	0.012	0.013	0.014	0.0155	0.016	0.0185		
0.006	0.007	0.008	0.011	0.012	0.012	0.0135	0.014	0.016		
0.0055	0.0065	0.0075	0.0095	0.0105	0.0115	0.0125	0.0135	0.015		
0.005	0.006	0.007	0.0095	0.010	0.011	0.0125	0.013	0.015		
0.0045	0.0055	0.0065	0.0085	0.009	0.010	0.0115	0.012	0.014		
0.0035	0.004	0.0045	0.0055	0.006	0.0065	0.007	0.0075	0.0085		
0.003	0.0035	0.0035	0.0045	0.005	0.006	0.0065	0.0065	0.0075		
0.0035	0.004	0.0045	0.006	0.006	0.007	0.0075	0.008	0.009		
0.003	0.0035	0.004	0.005	0.0055	0.006	0.007	0.007	0.008		
0.0035	0.004	0.004	0.0045	0.0055	0.006	0.0065	0.007	0.008		
0.003	0.0035	0.0035	0.004	0.0045	0.0055	0.006	0.006	0.007		

*Special Geometry

ł

Use HPM2M for greater drill depths over 8xD. HPM2M is used for any interruptions and produces a better hole tolerance and finish in comparison to HPM.

Luse HPS2M for greater drill depths over 8xD. HPS2M is used for any interruptions and produces a better hole tolerance and finish in comparison to HPS.

Parameter Reductions for Length to Diameter Relationships							
6xD	0.90 reduction for speed and feed adjustment						
⊥ 9xD	0.80 reduction for speed and feed adjustment						
<u> </u>	0.70 reduction for speed and feed adjustment						
🔔 15xD - 20xD	0.60 reduction for speed and feed adjustment						

Flood Coolant Applications

Recommend if diameter to depth is less than or equal to three times the diameter. Reduce speed by 20% and if needed drop feed by 10% to maintain optimal chip formation

Parameter Recommendations for Step Drills

- Feed rate is based off the pilot diameter
- Speed rate is based off the largest step diameter

X WARNING Refer to Speed and Feed charts for recommended adjustments to speeds and feeds. Refer to page A15: 17 for deep hole drilling guidelines in this section of the catalog. Visit www.alliedmachine.com/DeepHoleGuidelines for the most up-to-date information and procedures. Factory technical assistance is available for your specific applications through our Application Engineering Team. *ext:* 7611 | *email:* appeng@alliedmachine.com

IMPORTANT: The speeds and feeds listed above are a general starting point for all applications. Refer to the Coolant Recommendation charts for coolant requirements to run at the recommended speeds and feeds. Factory technical assistance is also available through our Application Engineering Team. *ext:* **7611** | *email:* **appeng@alliedmachine.com**

Ε

SPECIALS

Recommended Drilling Data | Imperial (inch)

							Feed Rate (IPF	R) by Diameter
ISO	Material	Hardness (BHN)	General Application Geometry	Special Geometry	Coating	Speed (SFM)	0.118 - 0.157	0.157 - 0.197
	Stainless Steel 400 Series	185-275	HPS	A HPS2M	AM460	250	0.004	0.0045
	416, 420, etc.	275-350	HPS	A HPS2M	AM460	195	0.0035	0.004
	Stainless Steel 300 Series	135-185	HPS	A HPS2M	AM460	200	0.0035	0.004
Μ	304, 316, 17-4PH, etc.	185-275	HPS	A HPS2M	AM460	175	0.003	0.0035
	Super Duplex Stainless Steel	135-185	HPS	A HPS2M	AM460	150	0.0035	0.004
		185-275	HPS	A HPS2M	AM460	135	0.003	0.0035
	Weer Dista	400	LUD10C		41420	170	0.002	0.002
	Wear Plate	400	HP106	-	AM420	170	0.002	0.002
	Hardox, AR400, T-1, etc.	500	HP106	-	AM420	140	0.002	0.002
Н		600	HP106	-	AM420	100	0.002	0.002
	Hardened Steel	300-400	HP106	-	AM420	170	0.002	0.002
		400-500	HP106		AM420	140	0.002	0.002
	SG/Nodular Cast Iron	120-150	HPS2M	🔶 CIB	AM440	500	0.008	0.0085
		150-200	HPS2M	🔶 CIB	AM440	485	0.007	0.0075
		200-220	HPS2M	🔶 CIB	AM440	470	0.006	0.007
		220-260	HPS2M	🔶 CIB	AM440	455	0.006	0.007
1/		260-320	HPS2M	🔶 CIB	AM440	415	0.005	0.0065
K	Gray/White Cast Iron	120-150	HPS2M	🔶 CIB	AM440	545	0.009	0.0095
		150-200	HPS2M	🔶 CIB	AM440	530	0.008	0.0085
		200-220	HPS2M	🔶 CIB	AM440	515	0.007	0.008
		220-260	HPS2M	CIB	AM440	475	0.007	0.008
		260-320	HPS2M	🔶 CIB	AM440	450	0.006	0.0075
	Cast Aluminum	30	HPF	ОСАВ	TiCN	950	0.0075	0.0085
		180	HPF		TICN	755	0.0075	0.0085
Ν	Mrought Aluminum	30	HPF	↓ WAB	TICN			0.0075
	Wrought Aluminum	30 180	HPF	∆ WAB	TICN	1100 950	0.0075	0.0085
								0.0075
	Aluminum Bronze	100-200	HPM	-	TICN	370	0.004	
		200-250	HPM	-	TICN	310	0.0035	0.0045
	Brass	100	BCB	_	TIN	750	0.005	0.006
	Copper	60	BCB	-	TIN	510	0.002	0.0025

*Special Geometry

Use HPS2M for greater drill depths over 8xD. HPS2M is used for any interruptions and produces a better hole tolerance and finish in comparison to HPS.

CIB (Cast Iron Burnish): Unique point, web, and cutting edge designed to significantly improve hole finish and hole tolerance. NOTE: Reduce speed and feed parameters above from 40% - 50% reduction.

O CAB (Cast Aluminum Burnish): Unique point, web, and cutting edge designed to significantly improve hole finish and hole tolerance. NOTE: Reduce speed and feed parameters above from 40% - 50% reduction.

WAB (Wrought Aluminum Burnish): Unique point, web, and cutting edge designed to significantly improve hole finish and hole tolerance. **NOTE:** Reduce speed and feed parameters above from 40% - 50% reduction.

Parameter Reductions for Length to Diameter Relationships						
6xD	0.90 reduction for speed and feed adjustment					
⊥ 9xD	0.80 reduction for speed and feed adjustment					
<u> </u>	0.70 reduction for speed and feed adjustment					
🔔 15xD - 20xD	0.60 reduction for speed and feed adjustment					

Flood Coolant Applications

Recommend if diameter to depth is less than or equal to three times the diameter. Reduce speed by 20% and if needed drop feed by 10% to maintain optimal chip formation

Parameter Recommendations for Step Drills

- Feed rate is based off the pilot diameter
- · Speed rate is based off the largest step diameter

1. WARNING Refer to Speed and Feed charts for recommended adjustments to speeds and feeds. Refer to page A15: 17 for deep hole drilling guidelines in this section of the catalog. Visit www.alliedmachine.com/DeepHoleGuidelines for the most up-to-date information and procedures. Factory technical assistance is available for your specific applications through our Application Engineering Team. *ext:* 7611 | *email:* appeng@alliedmachine.com

IMPORTANT: The speeds and feeds listed above are a general starting point for all applications. Refer to the Coolant Recommendation charts for coolant requirements to run at the recommended speeds and feeds. Factory technical assistance is also available through our Application Engineering Team. *ext:* **7611** | *email:* **appeng@alliedmachine.com**

DRILLING

Recommended Drilling Data | Imperial (inch)

	Feed Rate (IPR) by Diameter								
0.197 - 0.236	0.236 - 0.276	0.276 - 0.315	0.315 - 0.394	0.394 - 0.472	0.472 - 0.551	0.551 - 0.630	0.630 - 0.709	0.709 - 0.787	
0.0055	0.0065	0.0075	0.009	0.0095	0.010	0.011	0.011	0.012	
0.0045	0.0055	0.0065	0.008	0.0085	0.0095	0.010	0.010	0.011	
0.0045	0.005	0.006	0.007	0.0075	0.008	0.009	0.0095	0.0105	
0.004	0.004	0.005	0.006	0.0065	0.007	0.008	0.008	0.009	
0.0045	0.005	0.006	0.007	0.007	0.0075	0.0075	0.008	0.0085	
0.004	0.004	0.0045	0.0055	0.0055	0.0065	0.0065	0.007	0.007	
0.002	0.003	0.003	0.004	0.005	0.0055	0.007	0.008	0.009	
0.002	0.003	0.003	0.004	0.004	0.0045	0.006	0.007	0.008	
0.002	0.003	0.003	0.004	0.004	0.0045	0.006	0.007	0.008	
0.002	0.003	0.003	0.004	0.005	0.0055	0.007	0.008	0.009	
0.002	0.003	0.003	0.004	0.004	0.0045	0.006	0.007	0.008	
0.009	0.011	0.012	0.014	0.0155	0.017	0.019	0.0205	0.022	
0.0085	0.01	0.0115	0.013	0.014	0.0155	0.0165	0.0185	0.021	
0.008	0.009	0.011	0.012	0.013	0.014	0.015	0.017	0.019	
0.008	0.009	0.011	0.012	0.013	0.014	0.015	0.017	0.019	
0.0075	0.0085	0.01	0.0115	0.0125	0.0135	0.0145	0.0155	0.017	
0.010	0.012	0.013	0.0155	0.0165	0.0185	0.020	0.022	0.024	
0.0095	0.011	0.0125	0.0145	0.0155	0.0165	0.0175	0.0195	0.022	
0.009	0.010	0.012	0.013	0.014	0.015	0.016	0.018	0.020	
0.009	0.010	0.012	0.013	0.014	0.015	0.016	0.018	0.020	
0.0085	0.0095	0.0115	0.0125	0.0135	0.0145	0.0155	0.0165	0.019	
0.009	0.010	0.0125	0.0145	0.016	0.018	0.0195	0.020	0.022	
0.0085	0.009	0.0125	0.0135	0.0155	0.017	0.0195	0.019	0.021	
0.0095	0.011	0.0125	0.0135	0.017	0.0185	0.020	0.021	0.023	
0.0085	0.010	0.0115	0.0135	0.0155	0.0175	0.019	0.020	0.022	
0.006	0.007	0.008	0.009	0.01	0.012	0.013	0.014	0.015	
0.005	0.006	0.0065	0.007	0.008	0.01	0.011	0.012	0.014	
0.007	0.009	0.010	0.0115	0.0125	0.014	0.016	0.017	0.018	
0.003	0.003	0.003	0.004	0.004	0.004	0.005	0.006	0.007	

*Special Geometry

Luse HPS2M for greater drill depths over 8xD. HPS2M is used for any interruptions and produces a better hole tolerance and finish in comparison to HPS.

CIB (Cast Iron Burnish): Unique point, web, and cutting edge designed to significantly improve hole finish and hole tolerance.
NOTE: Reduce speed and feed parameters above from 40% - 50% reduction.

CAB (Cast Aluminum Burnish): Unique point, web, and cutting edge designed to significantly improve hole finish and hole tolerance. NOTE: Reduce speed and feed parameters above from 40% - 50% reduction.

WAB (Wrought Aluminum Burnish): Unique point, web, and cutting edge designed to significantly improve hole finish and hole tolerance. **NOTE:** Reduce speed and feed parameters above from 40% - 50% reduction.

|--|

6xD	0.90 reduction for speed and feed adjustment
⊥ 9xD	0.80 reduction for speed and feed adjustment
<u> </u>	0.70 reduction for speed and feed adjustment
🔔 15xD - 20xD	0.60 reduction for speed and feed adjustment

Flood Coolant Applications

Recommend if diameter to depth is less than or equal to three times the diameter. Reduce speed by 20% and if needed drop feed by 10% to maintain optimal chip formation

Parameter Recommendations for Step Drills

- Feed rate is based off the pilot diameter
- Speed rate is based off the largest step diameter

t WARNING Refer to Speed and Feed charts for recommended adjustments to speeds and feeds. Refer to page A15: 17 for deep hole drilling guidelines in this section of the catalog. Visit www.alliedmachine.com/DeepHoleGuidelines for the most up-to-date information and procedures. Factory technical assistance is available for your specific applications through our Application Engineering Team. *ext:* 7611 | *email:* appeng@alliedmachine.com

IMPORTANT: The speeds and feeds listed above are a general starting point for all applications. Refer to the Coolant Recommendation charts for coolant requirements to run at the recommended speeds and feeds. Factory technical assistance is also available through our Application Engineering Team. *ext:* **7611** | *email:* **appeng@alliedmachine.com**

В

D

Recommended Drilling Data | Metric (mm)

								mm/rev) by neter
100	Advis 2.1	Hardness	General Application		6	Speed		4 00 5 00
ISO		(BHN)	Geometry	Special Geometry*	Coating	(M/min)	3.00 - 4.00	4.00 - 5.00
	Free Machining Steel	100-150	HPM	HPM2M	AM420	152	0.15	0.18
	1118, 1215, 12L14, etc.	150-200	HPM	HPM2M	AM420	145	0.13	0.17
		200-250	HPS	A HPS2M	AM420	137	0.10	0.15
	Low Carbon Steel	85-125	HPM	HPM2M	AM420	139	0.15	0.18
	1010, 1020, 1025,	125-175	HPM	HPM2M	AM420	134	0.15	0.17
	1522, 1144, etc.	175-225	HPM	HPM2M	AM420	130	0.13	0.15
		225-275	HPS	A HPS2M	AM420	125	0.11	0.15
	Medium Carbon Steel	125-175	HPM	HPM2M	AM420	134	0.14	0.15
	1030, 1040, 1050, 1527,	175-225	HPM	HPM2M	AM420	131	0.13	0.14
	1151, etc.	225-275	HPS	A HPS2M	AM420	122	0.11	0.13
		275-325	HPS	A HPS2M	AM420	114	0.10	0.13
Р	Alloy Steel	125-175	HPM	HPM2M	AM420	123	0.14	0.15
۲	4140, 5140, 8640, etc.	175-225	HPM	HPM2M	AM420	116	0.13	0.14
		225-275	HPS	A HPS2M	AM420	111	0.10	0.13
		275-325	HPS	A HPS2M	AM420	104	0.10	0.13
		325-375	HP106	-	AM420	99	0.09	0.11
	High Strength Alloy	225-300	HPS	A HPS2M	AM420	104	0.10	0.13
	4340, 4330V, 300M, etc.	300-350	HPS	A HPS2M	AM420	98	0.10	0.13
		350-400	HP106	-	AM420	76	0.09	0.10
	Structural Steel	100-150	HPS	A HPS2M	AM420	137	0.14	0.17
	A36, A285, A516, etc.	150-250	HPS	A HPS2M	AM420	130	0.11	0.14
		250-350	HPS	A HPS2M	AM420	119	0.10	0.13
	Tool Steel	150-200	HPM	HPM2M	AM420	82	0.11	0.11
	H-13, H-21, A-4, 0-2, S-3, etc.	200-250	HPS	A HPS2M	AM420	76	0.10	0.10
	High Temp Alloy	140-220	HPS	_	AM460	34	0.08	0.08
	Hastelloy B, Inconel 600, etc.	220-310	HPS	-	AM460	30	0.05	0.05
S	Titanium Alloy	140-220	HPS	-	AM460	46	0.06	0.08
3		220-310	HPS	-	AM460	37	0.05	0.06
	Aerospace Alloy	185-275	HPS	-	AM460	49	0.08	0.08
	S82	275-350	HPS	-	AM460	40	0.05	0.05

*Special Geometry

Use HPM2M for greater drill depths over 8xD. HPM2M is used for any interruptions and produces a better hole tolerance and finish in comparison to HPM.

Use HPS2M for greater drill depths over 8xD. HPS2M is used for any interruptions and produces a better hole tolerance and finish in comparison to HPS.

Parameter Reductions f	or
6xD	
<u> </u>	
⊥ 12xD	

ameter Reductions for Length to Diameter Relationships 6xD 0.90 reduction for speed and feed adjustment 4. 9xD 0.80 reduction for speed and feed adjustment 4. 12xD 0.70 reduction for speed and feed adjustment				
6xD	0.90 reduction for speed and feed adjustment			
6xD 0.90 reduction for speed and feed adjustment 4 9xD 0.80 reduction for speed and feed adjustment 4 12xD 0.70 reduction for speed and feed adjustment				
<u> </u>	0.70 reduction for speed and feed adjustment			
🔔 15xD - 20xD	0.60 reduction for speed and feed adjustment			

Flood Coolant Applications

Recommend if diameter to depth is less than or equal to three times the diameter. Reduce speed by 20% and if needed drop feed by 10% to maintain optimal chip formation

Parameter Recommendations for Step Drills

- Feed rate is based off the pilot diameter
- Speed rate is based off the largest step diameter .

1 WARNING Refer to Speed and Feed charts for recommended adjustments to speeds and feeds. Refer to page A15: 17 for deep hole drilling guidelines in this section of the catalog. Visit www.alliedmachine.com/DeepHoleGuidelines for the most up-to-date information and procedures. Factory technical assistance is available for your specific applications through our Application Engineering Team. ext: 7611 | email: appeng@alliedmachine.com

IMPORTANT: The speeds and feeds listed above are a general starting point for all applications. Refer to the Coolant Recommendation charts for coolant requirements to run at the recommended speeds and feeds. Factory technical assistance is also available through our Application Engineering Team. ext: 7611 | email: appeng@alliedmachine.com

D

Α

DRILLING

В

BORING

С

REAMING

	Feed Rate (mm/rev) by Diameter									
5.00 - 6.00	6.00 - 7.00	7.00 - 8.00	8.00 - 10.00	10.00 - 12.00	12.00- 14.00	14.00 - 16.00	16.00 - 18.00	18.00 - 20.00		
0.20	0.23	0.25	0.30	0.33	0.38	0.43	0.46	0.51		
0.19	0.22	0.24	0.28	0.30	0.36	0.41	0.43	0.48		
0.18	0.20	0.23	0.25	0.28	0.33	0.38	0.41	0.46		
0.20	0.23	0.25	0.30	0.34	0.37	0.42	0.44	0.50		
0.19	0.22	0.24	0.29	0.33	0.36	0.41	0.43	0.48		
0.18	0.20	0.23	0.28	0.32	0.34	0.38	0.41	0.46		
0.18	0.20	0.23	0.25	0.30	0.33	0.38	0.41	0.46		
0.18	0.19	0.23	0.28	0.30	0.33	0.37	0.41	0.44		
0.15	0.18	0.22	0.27	0.29	0.32	0.36	0.39	0.43		
0.15	0.18	0.22	0.27	0.28	0.32	0.34	0.37	0.42		
0.14	0.17	0.20	0.25	0.28	0.30	0.33	0.36	0.41		
0.17	0.19	0.22	0.27	0.29	0.33	0.37	0.41	0.43		
0.15	0.18	0.20	0.25	0.28	0.32	0.36	0.39	0.42		
0.15	0.17	0.20	0.24	0.27	0.30	0.34	0.37	0.39		
0.14	0.15	0.19	0.23	0.25	0.29	0.33	0.36	0.38		
0.13	0.14	0.18	0.23	0.25	0.28	0.32	0.34	0.37		
0.15	0.17	0.20	0.24	0.27	0.30	0.34	0.37	0.39		
0.14	0.15	0.19	0.23	0.25	0.29	0.33	0.36	0.38		
0.11	0.14	0.17	0.20	0.22	0.25	0.28	0.30	0.33		
0.18	0.20	0.24	0.30	0.33	0.36	0.39	0.41	0.47		
0.15	0.18	0.20	0.27	0.30	0.30	0.34	0.36	0.41		
0.14	0.17	0.19	0.24	0.27	0.29	0.32	0.34	0.38		
0.13	0.15	0.18	0.24	0.25	0.28	0.32	0.33	0.38		
0.11	0.14	0.17	0.22	0.23	0.25	0.29	0.30	0.36		
0.09	0.10	0.11	0.14	0.15	0.17	0.18	0.19	0.22		
0.03	0.09	0.09	0.14	0.13	0.17	0.18	0.13	0.19		
0.08	0.10	0.03	0.11	0.15	0.13	0.19	0.20	0.23		
0.09	0.09	0.10	0.13	0.13	0.18	0.19	0.18	0.23		
0.08	0.10	0.10	0.13	0.14	0.15	0.18	0.18	0.20		
0.08	0.09	0.09	0.10	0.14	0.14	0.15	0.15	0.18		

*Special Geometry

Use HPM2M for greater drill depths over 8xD. HPM2M is used for any interruptions and produces a better hole tolerance and finish in comparison to HPM.

Use HPS2M for greater drill depths over 8xD. HPS2M is used for any interruptions and produces a better hole tolerance and finish in comparison to HPS.

Parameter Reductions for Length to Diameter Relationships							
6xD 0.90 reduction for speed and feed adjustment							
▲ 9xD 0.80 reduction for speed and feed adjustment							
▲ 12xD 0.70 reduction for speed and feed adjustm							
\land 15xD - 20xD	0.60 reduction for speed and feed adjustment						

Flood Coolant Applications

Recommend if diameter to depth is less than or equal to three times the diameter. Reduce speed by 20% and if needed drop feed by 10% to maintain optimal chip formation

Parameter Recommendations for Step Drills

- Feed rate is based off the pilot diameter
- Speed rate is based off the largest step diameter

1 WARNING Refer to Speed and Feed charts for recommended adjustments to speeds and feeds. Refer to page A15: 17 for deep hole drilling guidelines in this section of the catalog. Visit www.alliedmachine.com/DeepHoleGuidelines for the most up-to-date information and procedures. Factory technical assistance is available for your specific SPECIALS applications through our Application Engineering Team. ext: 7611 | email: appeng@alliedmachine.com

IMPORTANT: The speeds and feeds listed above are a general starting point for all applications. Refer to the Coolant Recommendation charts for coolant requirements to run at the recommended speeds and feeds. Factory technical assistance is also available through our Application Engineering Team. ext: 7611 | email: appeng@alliedmachine.com

В

Х

A15: 13

Recommended Drilling Data | Metric (mm)

							· ·	mm/rev) by neter
ISO	Material	Hardness (BHN)	General Application Geometry	Special Geometry	Coating	Speed (M/min)	3.00 - 4.00	4.00 - 5.00
	Stainless Steel 400 Series	185-275	HPS	A HPS2M	AM460	76	0.10	0.11
	416, 420, etc.	275-350	HPS	A HPS2M	AM460	59	0.09	0.10
м	Stainless Steel 300 Series	135-185	HPS	A HPS2M	AM460	61	0.09	0.10
IVI	304, 316, 17-4PH, etc.	185-275	HPS	A HPS2M	AM460	53	0.08	0.09
	Super Duplex Stainless Steel	135-185	HPS	A HPS2M	AM460	46	0.09	0.10
		185-275	HPS	A HPS2M	AM460	41	0.08	0.09
	Wear Plate	400	HP106	_	AM420	52	0.05	0.05
	Hardox, AR400, T-1, etc.	500	HP106		AM420	43	0.05	0.05
н		600	HP106		AM420	30	0.05	0.05
	Hardened Steel	300-400	HP106		AM420	52	0.05	0.05
		400-500	HP106	_	AM420	43	0.05	0.05
		400-300	11F100	_	Alvi420	43	0.03	0.03
	SG/Nodular Cast Iron	120-150	HPS2M	🔶 CIB	AM440	152	0.20	0.22
		150-200	HPS2M	🔶 CIB	AM440	148	0.18	0.19
		200-220	HPS2M	🔶 CIB	AM440	143	0.15	0.18
		220-260	HPS2M	🔶 CIB	AM440	139	0.15	0.18
к		260-320	HPS2M	🔶 CIB	AM440	127	0.13	0.17
ĸ	Gray/White Cast Iron	120-150	HPS2M	🔶 CIB	AM440	166	0.23	0.24
		150-200	HPS2M	🔶 CIB	AM440	162	0.20	0.22
		200-220	HPS2M	🔶 CIB	AM440	157	0.18	0.20
		220-260	HPS2M	🔶 CIB	AM440	145	0.18	0.20
		260-320	HPS2M	🔶 CIB	AM440	137	0.15	0.19
	Cast Aluminum	30	HPF	О САВ	TiCN	290	0.19	0.22
		180	HPF	O CAB	TiCN	230	0.17	0.19
	Wrought Aluminum	30	HPF	∧ wab	TiCN	335	0.19	0.22
		180	HPF	∆ WAB	TiCN	290	0.17	0.19
Ν	Aluminum Bronze	100-200	HPM	_	TiCN	113	0.10	0.13
		200-250	HPM	_	TiCN	95	0.09	0.13
	Brass	100	ВСВ	_	TIN	229	0.13	0.15
	Copper	60	BCB	_	TIN	155	0.05	0.06

*Special Geometry

Use HPS2M for greater drill depths over 8xD. HPS2M is used for any interruptions and produces a better hole tolerance and finish in comparison to HPS.

CIB (Cast Iron Burnish): Unique point, web, and cutting edge designed to significantly improve hole finish and hole tolerance. NOTE: Reduce speed and feed parameters above from 40% - 50% reduction.

O CAB (Cast Aluminum Burnish): Unique point, web, and cutting edge designed to significantly improve hole finish and hole tolerance. NOTE: Reduce speed and feed parameters above from 40% - 50% reduction.

WAB (Wrought Aluminum Burnish): Unique point, web, and cutting edge designed to significantly improve hole finish and hole tolerance. **NOTE:** Reduce speed and feed parameters above from 40% - 50% reduction.

Parameter Reductions for Length to Diameter Relationships						
6xD 0.90 reduction for speed and feed adjustment						
9xD 0.80 reduction for speed and feed adjustment						
<u> </u>	0.70 reduction for speed and feed adjustment					
🏝 15xD - 20xD	0.60 reduction for speed and feed adjustment					

Flood Coolant Applications

Recommend if diameter to depth is less than or equal to three times the diameter. Reduce speed by 20% and if needed drop feed by 10% to maintain optimal chip formation

Parameter Recommendations for Step Drills

- Feed rate is based off the pilot diameter
- Speed rate is based off the largest step diameter

1. WARNING Refer to Speed and Feed charts for recommended adjustments to speeds and feeds. Refer to page A15: 17 for deep hole drilling guidelines in this section of the catalog. Visit www.alliedmachine.com/DeepHoleGuidelines for the most up-to-date information and procedures. Factory technical assistance is available for your specific applications through our Application Engineering Team. *ext:* 7611 | *email:* appeng@alliedmachine.com

IMPORTANT: The speeds and feeds listed above are a general starting point for all applications. Refer to the Coolant Recommendation charts for coolant requirements to run at the recommended speeds and feeds. Factory technical assistance is also available through our Application Engineering Team. *ext:* **7611** | *email:* **appeng@alliedmachine.com**

В

Recommended Drilling Data | Metric (mm)

Feed Rate (mm/rev) by Diameter								
5.00 - 6.00	6.00 - 7.00	7.00 - 8.00	8.00 - 10.00	10.00 - 12.00	12.00- 14.00	14.00 - 16.00	16.00 - 18.00	18.00 - 20.00
0.14	0.17	0.19	0.23	0.24	0.25	0.28	0.28	0.30
0.11	0.14	0.17	0.20	0.22	0.24	0.25	0.25	0.28
0.11	0.13	0.15	0.18	0.19	0.20	0.23	0.24	0.27
0.10	0.10	0.13	0.15	0.17	0.18	0.20	0.20	0.23
0.11	0.13	0.15	0.18	0.18	0.19	0.19	0.20	0.22
0.10	0.10	0.11	0.14	0.14	0.17	0.17	0.18	0.18
0.05	0.08	0.08	0.10	0.13	0.14	0.18	0.20	0.23
0.05	0.08	0.08	0.10	0.13	0.14	0.18	0.18	0.23
0.05	0.08	0.08	0.10	0.10	0.11	0.15	0.18	0.20
0.05	0.08	0.08	0.10	0.13	0.14	0.13	0.20	0.23
0.05	0.08	0.08	0.10	0.10	0.11	0.15	0.18	0.20
0.23	0.28	0.30	0.36	0.39	0.43	0.47	0.52	0.56
0.23	0.28	0.29	0.33	0.39	0.39	0.47	0.32	0.53
0.22	0.23	0.29	0.30	0.33	0.39	0.38	0.43	0.33
0.20	0.23	0.28	0.30	0.33	0.36	0.38	0.43	0.47
0.19	0.23	0.25	0.29	0.32	0.34	0.37	0.39	0.43
0.25	0.30	0.33	0.39	0.42	0.47	0.51	0.56	0.61
0.23	0.28	0.32	0.37	0.39	0.42	0.44	0.50	0.56
0.23	0.25	0.30	0.33	0.36	0.38	0.41	0.46	0.51
0.23	0.25	0.30	0.33	0.36	0.38	0.41	0.46	0.51
0.22	0.24	0.29	0.32	0.34	0.37	0.39	0.42	0.48
		0.00	0.07	.	0.10	0.70	0.51	0.50
0.23	0.25	0.32	0.37	0.41	0.46	0.50	0.51	0.56
0.22	0.23	0.29	0.34	0.39	0.43	0.47	0.48	0.53
0.24	0.28	0.32	0.37	0.43	0.47	0.51	0.53	0.58
0.22	0.25	0.29	0.34	0.39	0.44	0.48	0.51	0.56
0.15	0.18	0.20	0.23	0.25	0.30	0.33	0.36	0.38
0.13	0.15	0.17	0.18	0.20	0.25	0.28	0.30	0.36
0.18	0.23	0.25	0.29	0.32	0.36	0.41	0.43	0.46
0.08	0.08	0.08	0.10	0.10	0.10	0.13	0.15	0.18

*Special Geometry

Luse HPS2M for greater drill depths over 8xD. HPS2M is used for any interruptions and produces a better hole tolerance and finish in comparison to HPS.

CIB (Cast Iron Burnish): Unique point, web, and cutting edge designed to significantly improve hole finish and hole tolerance.
NOTE: Reduce speed and feed parameters above from 40% - 50% reduction.

CAB (Cast Aluminum Burnish): Unique point, web, and cutting edge designed to significantly improve hole finish and hole tolerance. NOTE: Reduce speed and feed parameters above from 40% - 50% reduction.

WAB (Wrought Aluminum Burnish): Unique point, web, and cutting edge designed to significantly improve hole finish and hole tolerance. **NOTE:** Reduce speed and feed parameters above from 40% - 50% reduction.

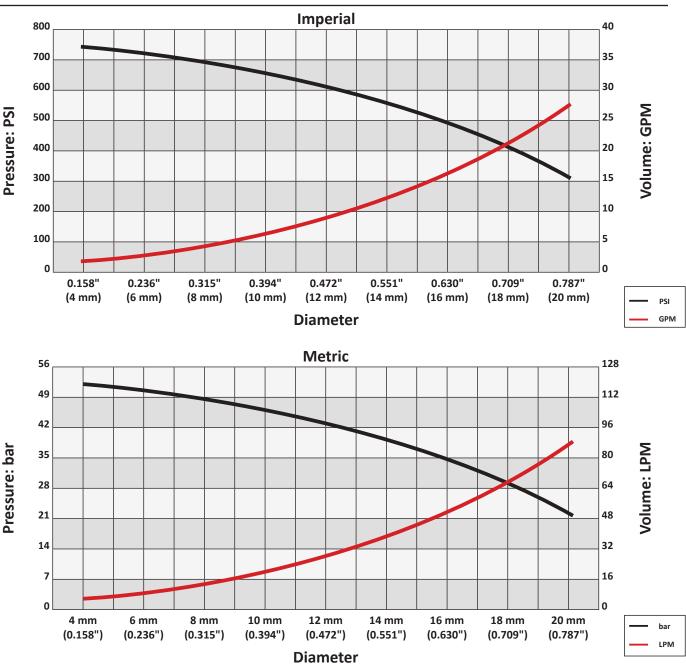
6xD	0.90 reduction for speed and feed adjustment
⊥ 9xD	0.80 reduction for speed and feed adjustment
<u> </u>	0.70 reduction for speed and feed adjustment
🏝 15xD - 20xD	0.60 reduction for speed and feed adjustment

Flood Coolant Applications

Recommend if diameter to depth is less than or equal to three times the diameter. Reduce speed by 20% and if needed drop feed by 10% to maintain optimal chip formation

Parameter Recommendations for Step Drills

- Feed rate is based off the pilot diameter
- Speed rate is based off the largest step diameter


t WARNING Refer to Speed and Feed charts for recommended adjustments to speeds and feeds. Refer to page A15: 17 for deep hole drilling guidelines in this section of the catalog. Visit www.alliedmachine.com/DeepHoleGuidelines for the most up-to-date information and procedures. Factory technical assistance is available for your specific applications through our Application Engineering Team. *ext:* 7611 | *email:* appeng@alliedmachine.com

IMPORTANT: The speeds and feeds listed above are a general starting point for all applications. Refer to the Coolant Recommendation charts for coolant requirements to run at the recommended speeds and feeds. Factory technical assistance is also available through our Application Engineering Team. *ext:* **7611** | *email:* **appeng@alliedmachine.com**

В

SPECIALS

Coolant Recommendations

Coolant Adjustment

Drill Length	Pressure and Flow Multiplier
Up to 6xD	See above chart
>6 - 9xD	1.2
🔺 >9 - 12xD	1.4
<u> </u>	1.6
<u>∧</u> >15 - 20xD	2

Coolant Recommendation Example | Imperial

If the recommended coolant pressure and flow is 600 PSI and 12 GPM for a 3xD tool, the adjusted pressure and flow for a 9xD tool would be:										
600 x 1.2 = 720 PSI 12 x 1.2 = 14.4 GPM										
Coolant Recommendation Example Metric										
If the recommended coolant pressure and flow is 42 bar and 32 LPM for a 3xD tool, the adjusted pressure and flow for a 9xD tool would be:										
42 x 1.2 = 50.4 bar 32 x 1.2 = 38.4 LPM										

SPECIALS

• Coolant must have proper additives to prevent excessive foaming during drilling cycle.

• Positive displacement coolant pump is recommended to maintain coolant flow at recommended values.

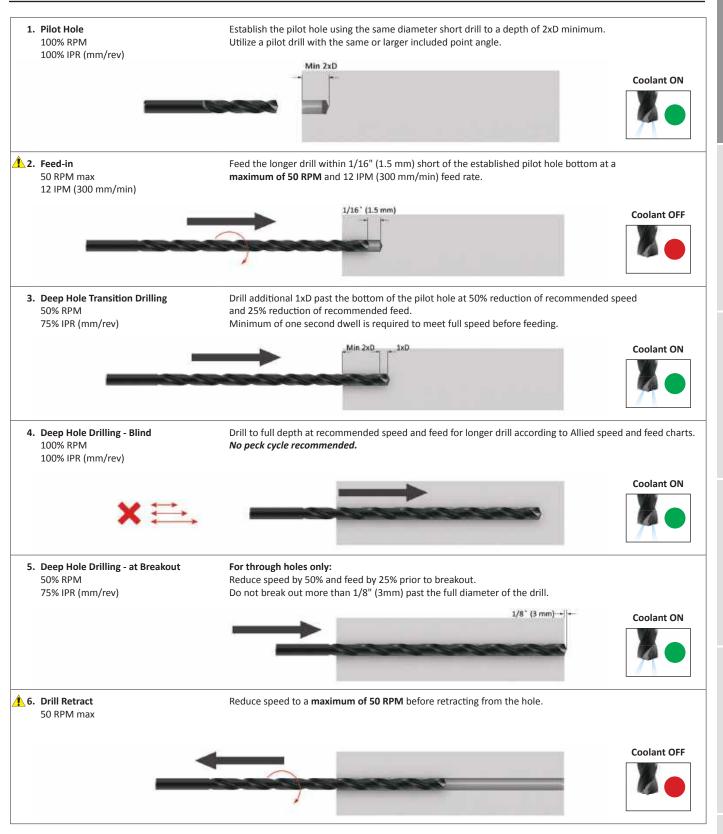
applications through our Application Engineering Team. ext: 7611 | email: appeng@alliedmachine.com

• The coolant filter must be less than 5 microns. Fine filtration is necessary to prevent blockage of the smaller coolant holes of the solid carbide tool.

Α

DRILLING

Е


THREADING

NOTES:

A15: 16

t WARNING Refer to Speed and Feed charts for recommended adjustments to speeds and feeds. Refer to page A15: 17 for deep hole drilling guidelines in this section of the catalog. Visit www.alliedmachine.com/DeepHoleGuidelines for the most up-to-date information and procedures. Factory technical assistance is available for your specific

Deep Hole Drilling Guidelines

A WARNING Tool failure can cause serious injury. To prevent:

- When using Superion drills greater than 9xD without support bushing, use a short Superion drill to establish an initial hole that is a minimum of 2 diameters deep.

- Do not rotate drills more than 50 RPM unless it is engaged with the workpiece or fixture.

Visit www.alliedmachine.com/DeepHoleGuidelines for the most up-to-date information and procedures.

Factory technical assistance is available for your specific applications through our Application Engineering department. ext: **7611** | email: appeng@alliedmachine.com

D

SPECIALS

Troubleshooting Guide

Α

В

BORING

С

REAMING

D

BURNISHING

		Shorten	Incre	ease	Decr	ease	Incre	ease	Use	Change	Align /
Problem	Problem Condition		Feed Rate ^G	Speed ^G	Feed Rate ^{A G}	Speed ^G	Coolant Pressure	Coolant Flow	Through Tool Coolant ^B	Point Angle	Repair Spindle
	Lack of Drill Rigidity	0									
a	Improper Cutting Parameters		•		•	•					
Decrease Tool Life	Excessive Margin Wear					•	0	0	0		•
	Cutting Edge Chipping				•						•
	Chattering/Vibration	0	•			0					•
	Built-up Edge ^D					٠	0	0	•		
	Chipping of Point				•	•				0	•
Poor Chip Evacuation ^C	Long Chips		•			•	0	0			
Poor Chip vacuation	Chip Packing				•	•	•	0	•		
Po	Blue Chips				•	•	•	•	•		
	Workpiece Deflection				•					0	
E	Bell Mouth	0	•			•				0	
Hole Form	Oversized Hole	0		•	•						•
Р	Undersized Hole		•			٠	•	•			
	Hole Leadoff	0			•	0				0	•
	Workpiece Burning				•	٠	•	•	•		
nce	Tool Deflection	0			•	٠				0	•
Performance	Harder Materials				•	٠			•		
Perf	Retract Spiral	•			•	•					•
	Exit Burr			•	•					0	

•: Primary solution

O: Secondary solution

 $\ensuremath{\textbf{A}}\xspace:$ Do not reduce feed rates below threshold of good chip form

B: Run coolant through tool when drilling greater than 3xD.

C: Add peck cycle to help clear chips

D: Ensure coolant quality with regular maintenance free of swarf

G: Refer to speed and feed chart

IMPORTANT: Factory t

SPECIALS

Troubleshooting Guide

Problem	Condition	Different Coating	Different Geometry	Tool Clamping	Workpiece Fixturing	Regrind/ Recondition	Check Tool Diameter	Entry Speed & Feed ^E	TIR Verification ^F	Exit Speed & Feed
	Lack of Drill Rigidity			•	•					
e	Improper Cutting Parameters									
ool Lif	Excessive Margin Wear	0		•	•	0				
se Tc	Cutting Edge Chipping		0	•	•	0				
Decrease Tool Life	Chattering/Vibration			•	•					
	Built up Edge ^D	0	0							
	Chipping of Point		0	•	•	0				
Poor Chip Evacuation ^C	Long Chips		0							
	Chip Packing		0							
Po Eva	Blue Chips									
	Workpiece Deflection		0		•					
E	Bell Mouth			•	•			•		
Hole Form	Oversized Hole			•	•	0			•	
위	Undersized Hole					•	•		•	
	Hole Lead Off		0	•	•	0		•	•	
	Workpiece Burning									
ance	Tool Deflection		0	•	•			•	0	
Performance	Harder Materials	0	0							
Perf	Retract Spiral		0	•					•	•
	Exit Burr		0							

•: Primary solution

O: Secondary solution

C: Add peck cycle to help clear chips

D: Ensure coolant quality with regular maintenance free of swarf

E: Reduce entry speed and feed parameters 20%

F: TIR range of 0.000"-0.001" (prefer 0.0000"-0.0005")

Speed and Feed Reduction Table												
	Interruptions:											
Condition	Reduction Speed	Reduction Feed										
Small Cross Hole (C.H)	0.90	0.85										
Large Cross Hole(C.H)	0.75	0.70										
Incline Angle Entry(I.A)	0.80	0.75										
I.A + C.H	0.70	0.65										
Coolant Type:												
Condition	Reduction Speed	Reduction Feed										
**Flood	See Note	See Note										
Dry	0.50	0.50										
Mist	0.70	0.85										
	Machine:											
Machine Type	Reduction Speed	Reduction Feed										
Lathe	0.90	0.85										
	Depth Ratio:											
Condition	Reduction Speed	Reduction Feed										
6xD	0.90	0.90										
9xD	0.80	0.80										
12xD	0.70	0.70										
		0.60										

Example: If the recommended speed and feed is 365 SFM and 0.010 IPR for a 0.276" - 0.315" diameter drill at 12xD, the speed and feed would be 255 SFM & 0.007 IPR.

 365 SFM x 0.70 = 255 SFM
 0.010 IPR x 0.70 = 0.007 IPR

 **Flood coolant applications: Recommend if diameter to depth is less than or equal to 3xD. Reduce speed by 20% and if needed, drop feed by 10% to maintain optimal chip formation.

IMPORTANT: Factory technical assistance is available for your specific applications through our Application Engineering department. ext: **7611** | email: appeng@alliedmachine.com

www.alliedmachine.com

Ε

SPECIALS

В

BORING

С

REAMING

ALLIED MACHINE S ENGINEERING SUPERION Tooling Quote Form

Please email the completed form to: your local FSE (if applicable) or appeng@alliedmachine.com.

LOGIN TO DOWNLOAD AND COMPLETE THIS FORM OFFLINE: alliedmachine.com/SuperionQuoteForm

Please include any prints for the part (specify the feature) and/ or tool for this project. More information will help ensure proper tooling for this quote.

FSE	if applicable)

Name

	Please fill in the fields below completely for a quote to be processed.											
Distributor Informat	tion	End User Information										
Company Name:		Company Name:										
Contact:		Contact:										
Account Number:		Industry:										
Phone:		Phone:										
Email:		Email:										
Phone:		Phone:										

Superion Objective What issue(s) are we solving? (i.e. penetration rate, finish, tool life, hole size, etc.)

Application Information Hole Diameter: in/mm Tolerance: Material: (4150 / A36 / Cast Iron / etc.) Pre-existing Diameter: Depth of Cut: _ in/mm in/mm Hardness: (BHN / Rc) Required Finish: State: RMS (Casting / Hot rolled / Forging)

Machine Information

Machine Type:	(Lathe / Screw machine / Ma	achine center / etc.)	_ Model #:	_		
Shank Required:	(Cylindrical / Whistle Not	tch / Tang / etc.)		Power:		. HP/KW
Rigidity:	Orientation:	Tool Rotating:		Thrust:		lbs/N
Excellent	Vertical	Yes				
🗌 Good	Horizontal	🗌 No		Max Spindle Speed:		RPM
Poor						

Coolant Information

Coolant Delivery:	(Through tool/Flood)	Coolant Pressure:	_ PSI / bar
Coolant Type:	(Air mist, oil, synthetic, water soluble, etc.)	Coolant Volume:	GPM / LPM
Current Process	Is this a new project? Yes No (If selected no, please	fill the box out below)	

Current Tooling:	(Manufacturer / Item Number)	_ Current Tool Life:	Holes	Parts	Inches
Current Speeds and Feeds:		Current Coating/Substrate:			
Notes:					

les	 	 Α												
														DRILLING
														ING
														В
														m
														BORING
														NG
														 6
														 С
														 RE/
														 REAMING
														 G
							 			 				 D
 							 			 				 BURNISHING
							 			 				 HSIN
										 				 ING
														 Е
									 		 	 		 THREADING
										 				 ADIN
										 				 G
														 Х
														SPECIALS
														CIAL
														S

www.alliedmachine.com

Image:																							
B Image: Solution of the second of the s																							
B Image: Solution of the second of the s	DRI															 		 	 	 	 		
B Image: Solution of the second of the s																			 	 			
BORNOM Image: Solution of the second of	ā																						
BORNOM Image: Solution of the second of																							
BORNOM Image: Solution of the second of																							
BORNOM Image: Solution of the second of																 		 	 	 	 		
BORNOM Image: Solution of the second of	R															 			 	 			
Image: Section 1 Image: Section 2 Image: Section 2 <td< td=""><td>D</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	D																						
Image: Section 1 Image: Section 2 Image: Section 2 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																							
Image: Section 1 Image: Section 2 Image: Section 2 <td< td=""><td>BOF</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	BOF																						
Image: Section 1 Image: Section 2 Image: Section 2 <td< td=""><td>RINO</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td> </td><td> </td><td></td><td></td><td></td></td<>	RINO																		 	 			
	(,)																		 	 			
	С																		 	 			_
	R																						
	AN																						
	ING																						
Image: Set of the set																			 	 			
Image: Set of the set																			 	 			
Image: Set of the set																							
Image: Set of the set																							
Image:	D																						
Image:	-																		 	 			
Image:	UR															 			 	 			
Image:	ISIN																						
Image:	HN.																						
Image: Sector	(_)																						
Image: Sector																			 	 			
Image: Sector																			 	 			
Image: Sector	-																		 				
	1																						
	TRE 1																		 	 			
	ADI																		 	 			
x	NG																		 	 			
x																							
x																							
X																			 				
	X																						
	S																						
	PEC																						
	SPECIALS																						

B ENGINEERING

Warranty Information

 \bullet \bullet \bullet \bullet

Allied Machine & Engineering ("Allied Machine") warrants to original equipment manufacturers, distributors, industrial and commercial users of its products for one year from the original date of sale that each new product manufactured or supplied by Allied Machine shall be free from defects in material and workmanship.

Allied Machine's sole and exclusive obligation under this warranty is limited to, at its option, without additional charge, replacing or repairing this product or issuing a credit. For this warranty to be applied, the product must be returned freight prepaid to the plant designated by an Allied Machine representative and which, upon inspection, is determined by Allied Machine to be defective in material and workmanship.

Complete information as to operating conditions, machine, setup, and the application of cutting fluid should accompany any product returned for inspection. This warranty shall not apply to any Allied Machine products which have been subjected to misuse, abuse, improper operating conditions, improper machine setup or improper application of cutting fluid or which have been repaired or altered if such repair or alteration, in the judgement of Allied Machine, would adversely affect the performance of the product.

THIS WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Allied Machine shall have no liability or responsibility for any claim, whether in contract, tort or otherwise, for any loss or damage arising out of, connected with, or resulting from the manufacture, sale, delivery or use of any product sold hereunder, in excess of the cost of replacement or repair as provided herein.

Allied Machine shall not be liable in contract or in tort (including, without limitation, negligence, strict liability or otherwise) for economic losses of any kind or for any special, incidental, indirect, consequential, punitive or exemplary damages arising in any way out of the performance of, or failure to perform this agreement.

ALL PRICES, DELIVERIES, DESIGNS, AND MATERIALS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

Wohlhaupter GmbH is registered to ISO 9001:2015 by QA TECHNIC

Allied Machine & Engineering is registered to ISO 9001:2015 by DQS

United States

Allied Machine & Engineering 120 Deeds Drive Dover OH 44622 United States **Phone:** +1.330.343.4283

Toll Free USA and Canada: 800.321.5537

Toll Free USA and Canada: 800.223.5140

Allied Machine & Engineering 485 W Third Street Dover OH 44622 United States **Phone:** +1.330.343.4283

Phone:

Toll Free USA and Canada: 800.321.5537

Europe

Allied Machine & Engineering Co. (Europe) Ltd. 93 Vantage Point Pensnett Estate Kingswinford West Midlands DY6 7FR England

Wohlhaupter® GmbH Maybachstrasse 4 Postfach 1264 72636 Frickenhausen Germany

Phone: +49 (0) 7022.408.0

+44(0)1384.400900

Asia

Wohlhaupter® India Pvt. Ltd. B-23, 3rd Floor B Block Community Centre Janakpuri, New Delhi - 110058 India **Phone:** +91 (0) 11.41827044

Your local Allied Machine representative:

www.alliedmachine.com

Allied Machine & Engineering is registered to ISO 9001:2015 by DQS Wohlhaupter GmbH is registered to ISO 9001:2015 by QTA TECHNIC

Copyright © 2024 Allied Machine and Engineering Corp. – All rights reserved. All trademarks designated with the ® symbol are registered in the United States and other countries. Literature Order Number: A15-SUP Publish Date: November 2024