

Holemaking Solutions for Today's Manufacturing

Recommended Cutting Data

It's so much easier when you make **BETTER CHIPS**

Allied Machine specializes in developing innovative solutions designed to *pulverize* material. Our tools achieve the chip formation and chip evacuation you need to increase your production.

Allied Machine & Engineering is registered to ISO 9001:2015 by DQS

Wohlhaupter GmbH is registered to ISO 9001:2015 by QUACERT

Allied Machine & Engineering Co. Europe Ltd. is registered to ISO 9001:2015 by bsi.

Our Commitment to YOU

• • • • •

Manufacturing is the DNA of success everywhere in the world. When you're manufacturing, you're building, creating, and developing something that physically didn't exist before.

At Allied Machine, our core purpose is to provide practical and dependable solutions to improve your manufacturing processes. We know you face challenges and difficulties every day, so we're here to simplify your holemaking processes and improve your production.

However, many factors must be incorporated to truly improve production.

Some of those factors include increasing penetration rates while also improving chip formation and evacuation, reducing scrap rates by producing better parts, reducing setup times, and increasing tool life to get the most from your investment.

Not only does our tooling achieve these results, but our customer service is also an extension of our tooling advantages. Our Application Engineers and Field Sales Engineers are available to assist with any problems you encounter. Don't hesitate to put their skills and knowledge to the test. They won't disappoint.

This is our commitment to manufacturing, and it's our promise to you.

North America

Allied Machine

120 Deeds Drive Dover, OH 44622 United States

Allied Machine

485 West 3rd Street Dover, OH 44622 United States

ThreadMills USA[™]

4185 Crosstowne Ct #B Evans, GA 30809 United States

Superion® 1285 S Patton St.

Xenia, OH 45385 United States

Europe

Allied Machine Europe

93 Vantage Point Pensnett Estate Kingswinford West Midlands DY6 7FR, United Kingdom

Wohlhaupter® GmbH

Maybachstrasse 4 Postfach 1264 72636 Frickenhausen Germany Asia

Wohlhaupter® India

B-23, 3rd Floor B Block Community Centre Janakpuri, New Delhi - 110058 India

Allied Machine & Engineering is a worldwide leader in holemaking and finishing solutions. We are committed to providing practical and dependable solutions to our customers through innovative designs and superior customer and technical support.

We continue to expand our product offering in order to provide new and different solutions. With Field Sales Engineers located around the world, we position ourselves to provide technical support on site, right at your spindle.

www.alliedmachine.com

Recommended Cutting Data Technical Guide Contents	5
Drilling Product Selection Guide	1
Tap Drill Information and Formulas 5 - 6	5
Replaceable Insert Drilling	
GEN3SYS® XT and XT Pro	5
T-A Pro [®] Drilling System	3
T-A® Drilling System	5
High Performance & Universal 77 - 84	1
Large Diameter / Deep Hole Drilling	
APX™ Drill)
Indexable Carbide Insert Drilling	
4TEX [®] Drill	5
Revolution Drill [®])
Opening Drill [®] 101 - 106	5
Industry Solutions	
Structural Steel Drilling 107 - 116	
AccuPort 432 [®] 117 - 126	5
Boring	
Wohlhaupter [®]	
Criterion [®] 143 - 148	3
Reaming	
Burnishing)
Threading)
Superion [®] Solid Carbide Drilling 191 - 204	1
Notes	
Guaranteed Test/Demo Application From	7
Warranty Information 208	3

Product Selection Guide | Drilling

	Diameter Range (inch / mm)											
	0 - 0.5	0.5 - 1	1 - 1.5	1.5 - 2	2 - 2.5	2.5 - 3	3 - 3.5	3.5 - 4	4 - 4.5	4.5 - 5	5 - 5.5	5.5 - 6 +
Product	0 - 12.7	12.7 - 25.4	25.4 - 38.1	38.1 - 50.8	50.8 - 63.5	63.5 - 76.2	76.2 - 88.9	88.9 - 101.6	101.6 - 114.3	114.3 - 127	127 - 139.7	139.7 - 152.4 +
GEN3SYS [®] XT Pro		0.4331" - 1.3										
	(11.00 mm - 35	.00 mm)									
GEN3SYS [®] XT		0.4331" - 1.3	3780"									
	(11.00 mm - 35										
T-A Pro®		0 3739	" - 1.8820"									
			- 47.80 mm)									
GEN2 T-A®					0.2720// . 41	0701						
				(0.3739" - 4.! 9.50 mm - 114							
T-A®												
				()	0.3739" - 4.! 9.50 mm - 114			/	/			
High Performance												
						0.9688" (24.60 mm -						
Universal												
								" - 8.5000" 1 - 215.90 mm)			
APX™ Drill												
						92" - 4.0000" nm - 101.60 m	m)					
4TEX [®] Drill												
			720" - 1.8500" mm - 47.00 m									
Revolution Drill®						1.8750" - 4	0000"					
						(47.60 mm - 1						
Opening Drill®								2.0000	CODO			
							(2.0000" - 5 50.80 mm - 14				
Structural Steel: GEN3SYS [®] XT Pro		0.4331" - 1.3										
		11.00 mm - 35	.00 mm)									
Structural Steel: T-A®		0.9	5110" - 1.8820)"								
			8 mm - 47.80 i									
AccuPort 432®		0 38	60" - 2.4210"									
			nm - 61.50 mm	ו)								
BT-A Drill		-0.54	1.8829"									
			mm - 47.82 m									

Any product line with a black arrow indicates that larger non-standard diameters can be ordered by contacting Application Engineering:
 1.330.343.4283 ext. 7611
 1.800.321.5537 (toll free United States and Canada)
 appeng@alliedmachine.com

		Mac	hining Applic	ation	1			Mat	erial			
Length-to-Diameter Ratio	General Purpose	High Penetration	Deep Hole	Large Diameter	Industry Specific	Р	S	м	н	к	N	Catalog Section
3xD, 5xD, 7xD, 10xD, 12xD	•	•	•			•		•		•	•	A20
Stub, 3xD, 5xD, 7xD	•	•				•		•	0	•	•	A20
Stub, 3xD, 5xD, 7xD, 10xD, 12xD, 15xD	0	•	•	0		•	•	•		•	•	A25
1xD to 28xD	•	0	•	•		•						A30
1xD to 28xD	•	0	•	•					•			A30
	•		D	•		•	0			0		A40
	•		D	•		0	0	0		0	0	A40
3xD, 5xD, 8xD, 10xD	Ð		•	•		•	0			•		A50
2xD, 3xD, 4xD	•	Ð				•	•	•	•	•		A55
1xD, 2.2xD, 2.5xD, 3.5xD, 4.5xD,	0	Ð		•				•	0	•		A60
	0	Ð		•		•		•	0	•		A70
1.5xD, 3xD, 5xD, 7xD		0	D		•							A91
2xD, 4xD, 5xD, 6xD	0				•	•						A91
					•	•		0		•		A92
		Ð	•		•		0	0				A93

● Best ● Better ○ Good

Tap Drill Information and Formulas | Imperial (inch)

American - Unified Inch Screw Thread

Tap Size	Tap Drill Size	Decimal Equivalent	* Theo % Thread	Probable Mean Oversize	Probable Hole Size	** Probable % Thread
1/2 - 20	29/64	0.4531	72%	0.003	0.4561	68%
0/16 12	12.0 mm	0.4724	72%	0.003	0.4754	69%
9/16 - 12	31/64	0.4844	83%	0.003	0.4874	80%
	1/2	0.5000	87%	0.003	0.5030	82%
9/16 - 18	13.0 mm	0.5118	70%	0.003	0.5148	66%
	31/64	0.5156	65%	0.003	0.5186	61%
5/8 - 11	17/32	0.5313	79%	0.003	0.5343	77%
5/8 - 12	35/64	0.5469	72%	0.003	0.5499	69%
	9/16	0.5625	87%	0.003	0.5655	82%
5/8 - 18	14.5 mm	0.5709	75%	0.003	0.5739	71%
	37/64	0.5781	65%	0.003	0.5811	61%
11/16 - 12	39/64	0.6094	72%	0.003	0.6124	69%
	41/64	0.6406	84%	0.003	0.6436	82%
3/4 - 10	16.5 mm	0.6496	77%	0.003	0.6526	75%
	21/32	0.6563	72%	0.003	0.6593	70%
3/4 - 12	43/64	0.6719	72%	0.003	0.6749	69%
2/1. 1.5	11/16	0.6875	77%	0.003	0.6905	73%
3/4 - 16	17.5 mm	0.6890	75%	0.003	0.6920	71%
7/0 0	49/64	0.7656	76%	0.003	0.7686	74%
7/8 - 9	25/32	0.7813	65%	0.003	0.7843	63%
7/0 44	51/64	0.7969	84%	0.003	0.7999	81%
7/8 - 14	13/16	0.8125	67%	0.003	0.8155	64%
15/16 - 12	55/64	0.8594	72%	0.003	0.8624	69%
15/16 - 20	57/64	0.8906	72%	0.003	0.8936	68%
	22.0 mm	0.8661	82%	0.003	0.8691	81%
1 - 8	7/8	0.8750	77%	0.003	0.8780	75%
	57/64	0.8906	67%	0.003	0.8936	65%
1 12	29/32	0.9063	87%	0.003	0.9093	84%
1 - 12	59/64	0.9219	72%	0.003	0.9249	69%
1 - 14	15/16	0.9375	67%	0.003	0.9405	64%
1 1 /0 1 2	1-1/32	1.0313	87%	0.003	1.0343	84%
1-1/8 - 12	1-3/64	1.0469	72%	0.003	1.0499	69%
1-1/4 - 7	1-7/64	1.1094	76%	0.003	1.1124	74%

1.	RPM	= (3.82 • SFM) / DIA
	where:	
	RPM	= revolutions per minute (rev/min)
	SFM	= speed (ft/min)
	DIA	= diameter of drill (inch)
2.	IPM	= RPM • IPR
	where:	
	IPM	= inches per minute (in/min)
	RPM	= revolutions per minute (rev/min)
	IPR	= feed rate (in/rev)
3.	SFM	= RPM • 0.262 • DIA
	where:	
	SFM	= speed (ft/min)
	RPM	= revolutions per minute (rev/min)
	DIA	= diameter of drill (inch)
4.	Thrust	= 153,700 • IPR • DIA • K _m
	where:	
	Thrust	= axial thrust (lbs)
	IPR	= feed rate (in/rev)
	DIA	= diameter of drill (inch)
	Km	= specific cutting energy (lbs/in ²)
5.	Tool Power	= .6991 • IPR • RPM • K _m • DIA ²
	where:	
	Tool Power	= tool power (HP)
	IPR	= feed rate (in/rev)
	RPM	= revolutions per minute (rev/min)
	Km	= specific cutting energy (lbs/in ²)

Taper Pipe Thread (NPT)

Tap Size	Tap Drill Size	Decimal Equivalent	* Theo % Thread	Probable Mean Oversize	Probable Hole Size	** Probable % Thread
1/4 - 18	7/16	0.4375	-	0.003	0.4405	-
3/8 - 18	9/16	0.5625	-	0.003	0.5655	-
1/2 - 14	45/64	0.7031	-	0.003	0.7061	-
3/4 - 14	29/32	0.9063	_	0.003	0.9093	-

*Based on nominal tap drill diameter.

**Based on 0.003" probable mean oversize.

To calculate the percent of full thread for a given hole diameter:

0/ Thursda	# of the sole sources in the so	(Basic major diameter of thread - Drill hole size)
% Thread =	# of threads per inch •	.0130

Material Constants

Type of Material	Hardness	K _m (Ibs/in²)
Plain Carbon and Alloy	85 - 200 BHN	0.79
Steel	200 - 275 BHN	0.94
	275 - 375 BHN	1.00
	375 - 425 BHN	1.15
High-Temperature Alloys	-	1.44
Titanium Alloy	-	0.72
Stainless Steels	135 - 275 BHN	0.94
	30 - 45 RC	1.08
Cast Iron	100 - 200 BHN	0.50
	200 - 300 BHN	1.08
Copper Alloy	20 - 80 RB	0.43
	80 - 100 RB	0.72
Aluminum Alloy	_	0.22
Magnesium Alloy	_	0.16

Notes

• The above tap drill information represents probable thread percentages for the standard tap drills stocked at Allied Machine. Special insert diameters may be required in order to meet a user specific percentage of thread requirement.

• The 0.003" probable mean oversize hole condition is based on optimum cutting conditions. Probable percent of full thread may vary based on less ideal cutting conditions.

• The table and equations on this page are found in the Machinery's Handbook. Permission to simplify and print the equations is granted by the editor of the Machinery's Handbook.

Tap Drill Information and Formulas | Metric (mm)

Tap Size	Tap Drill Size	Decimal Equivalent (inch)	* Theo % Thread	Probable Mean Oversize	Probable Hole Size	** Probable % Thread
12 X 1.25	27/64	0.4219	79%	0.075 mm	10.79 mm	74%
12 X 1.25	10.8 mm	0.4252	74%	0.075 mm	10.88 mm	69%
14 X 2.0	15/32	0.4688	81%	0.075 mm	11.98 mm	78%
14 X 2.0	12.0 mm	0.4724	77%	0.075 mm	12.08 mm	74%
14 X 1.5	12.5 mm	0.4921	77%	0.075 mm	12.58 mm	73%
16 X 2.0	14.0 mm	0.5512	77%	0.075 mm	14.08 mm	74%
16 X 1.5	14.5 mm	0.5709	77%	0.075 mm	14.58 mm	73%
16 X 1.5	37/64	0.5781	68%	0.075 mm	14.76 mm	64%
18 X 2.5	15.5 mm	0.6102	77%	0.075 mm	15.58 mm	75%
10 1 1 5	16.5 mm	0.6496	77%	0.075 mm	16.58 mm	73%
18 X 1.5	21/32	0.6563	68%	0.075 mm	16.75 mm	64%
20 X 2.5	11/16	0.6875	78%	0.075 mm	17.54 mm	76%
20 X 2.5	17.5 mm	0.6890	77%	0.075 mm	17.58 mm	74%
20 X 1.5	18.5 mm	0.7283	77%	0.075 mm	18.58 mm	73%
20 X 1.5	47/64	0.7344	69%	0.075 mm	18.66 mm	65%
22 X 2.5	49/64	0.7656	79%	0.075 mm	19.52 mm	76%
22 X 2.5	19.5 mm	0.7677	77%	0.075 mm	19.58 mm	75%
22 V 4 F	20.5 mm	0.8071	77%	0.075 mm	20.58 mm	73%
22 X 1.5	13/16	0.8125	70%	0.075 mm	20.71 mm	66%
24.2.2	13/16	0.8125	86%	0.075 mm	20.71 mm	84%
24 X 3	21.0 mm	0.8268	76%	0.075 mm	21.08 mm	75%
24 X 2	22.0 mm	0.8661	77%	0.075 mm	22.08 mm	74%
24 X Z	7/8	0.8750	68%	0.075 mm	22.30 mm	65%
27 X 3	24.0 mm	0.9449	77%	0.075 mm	24.08 mm	75%

Forn	nulas	
1.	RPM	= (318.47 • m/min) / DIA
	where:	
	RPM	= revolutions per minute (rev/min)
	m/min	= speed (m/min)
	DIA	= diameter of drill (mm)
2.	mm/min	= RPM • mm/rev
	where:	
	mm/min	= mm per minute (mm/min)
	RPM	= revolutions per minute (rev/min)
	mm/rev	= feed rate (mm/rev)
3.	m/min	= RPM • 0.003 • DIA
	where:	
	m/min	= speed (m/min)
	RPM	= revolutions per minute (rev/min)
	DIA	= diameter of drill (mm)
4.	Thrust	= 154 • (mm/rev) • DIA • K _m
	where:	
	Thrust	= axial thrust (N)
	mm/rev	= feed rate (mm/rev)
	DIA	= diameter of drill (mm)
	Km	= specific cutting energy (kPa)
5.	Tool Power	= ((mm/rev) • RPM • K _m • DIA ²) / 218604.8
	where:	
	Tool Power	= tool power (HP)
	mm/rev	= feed rate (mm/rev)
	RPM	= revolutions per minute (rev/min)
	K _m	= specific cutting energy (kPa)
	DIA	= diameter of drill (mm)

BSP and ISO 7-1

Tap Size	Tap Drill Size	Decimal Equivalent	* Theo % Thread	Probable Mean Oversize	Probable Hole Size	** Probable % Thread
1/4-19	7/16	0.4375	-	0.075mm	11.19 mm	-
3/8-19	37/64	0.5781	-	0.075mm	14.76 mm	-
1/2-14	23/32	0.7188	-	0.075mm	18.33 mm	-
3/4-14	15/16	0.9375	_	0.075mm	23.89 mm	_

*Based on nominal tap drill diameter.

**Based on 0.075 mm probable mean oversize.

To calculate the percent of full thread for a given hole diameter:

% Thread = $\frac{76.93}{\text{Pitch (mm)}}$ • (Basic major diameter - Drill hole size)

Notes

- The above tap drill information represents probable thread percentages for the standard tap drills stocked at Allied Machine. Special insert diameters may be required in order to meet a user specific percentage of thread requirement.
- The 0.075 mm probable mean oversize hole condition is based on optimum cutting conditions. Probable percent of full thread may vary based on less ideal cutting conditions.
- The table and equations on this page are found in the Machinery's Handbook. Permission to simplify and print the equations is granted by the editor of the Machinery's Handbook.

Material Constants

Type of Material	Hardness	K _m (kPa)
Plain Carbon and Alloy	85 - 200 BHN	5.45
Steel	200 - 275 BHN	6.48
	275 - 375 BHN	6.89
	375 - 425 BHN	7.93
High-Temperature Alloys	-	9.93
Titanium Alloy	-	4.96
Stainless Steels	135 - 275 BHN	6.48
	30 - 45 RC	7.45
Cast Iron	100 - 200 BHN	3.45
	200 - 300 BHN	7.45
Copper Alloy	20 - 80 RB	2.96
	80 - 100 RB	4.96
Aluminum Alloy	-	1.52
Magnesium Alloy	_	1.10

section A20

GEN3SYS® XT and XT Pro

9 - 12
3 - 16
7 - 20
1 - 24
25
26

Recommended Drilling Data | Imperial (inch)

GEN3SYS XT Pro

				Feed Rate (IPR) by Diameter					
ISO	Material	Hardness (BHN)	Speed (SFM)	11 series 0.4331" - 0.4723"	12 series 0.4724" - 0.5117"	13 series 0.5118" - 0.5511"	14 series 0.5512" - 0.5905"		
	Free-Machining Steel	100 - 150	550	0.011	0.012	0.013	0.014		
	1118, 1215, 12L14, etc.	150 - 200	475	0.010	0.011	0.012	0.013		
		200 - 250	425	0.008	0.009	0.010	0.011		
	Low-Carbon Steel	85 - 125	520	0.011	0.012	0.013	0.014		
	1010, 1020, 1025, 1522, 1144, etc.	125 - 175	450	0.010	0.011	0.012	0.013		
		175 - 225	410	0.009	0.010	0.011	0.012		
		225 - 275	350	0.007	0.008	0.009	0.010		
	Medium-Carbon Steel	125 - 175	450	0.010	0.011	0.012	0.013		
	1030, 1040, 1050, 1527, 1140, 1151, etc.	175 - 225	410	0.009	0.010	0.011	0.012		
		225 - 275	350	0.008	0.009	0.010	0.011		
		275 - 325	300	0.007	0.008	0.009	0.010		
_	Alloy Steel	125 - 175	415	0.010	0.011	0.012	0.013		
P	4140, 5140, 8640, etc.	175 - 225	380	0.009	0.010	0.011	0.012		
		225 - 275	340	0.008	0.009	0.010	0.011		
		275 - 325	310	0.006	0.007	0.008	0.009		
		325 - 375	280	0.006	0.006	0.007	0.008		
	High-Strength Alloy	225 - 300	250	0.008	0.009	0.010	0.011		
	4340, 4330V, 300M, etc.	300 - 350	225	0.006	0.007	0.008	0.009		
		350 - 400	200	0.005	0.006	0.007	0.008		
	Structural Steel	100 - 150	410	0.010	0.011	0.012	0.013		
	A36, A285, A516, etc.	150 - 250	330	0.008	0.009	0.010	0.011		
		250 - 350	305	0.007	0.008	0.009	0.010		
	Tool Steel	150 - 200	265	0.006	0.007	0.007	0.008		
	H-13, H-21, A-4, 0-2, S-3, etc.	200 - 250	205	0.005	0.006	0.006	0.007		
	High-Temp Alloy	140 - 220	130	0.006	0.007	0.007	0.008		
	Hastelloy B, Inconel 600, etc.	220 - 310	100	0.005	0.006	0.006	0.007		
S	Titanium Alloy	140 - 220	140	0.005	0.006	0.007	0.008		
5		220 - 310	110	0.004	0.005	0.006	0.007		
	Aerospace Alloy	185 - 275	165	0.004	0.004	0.005	0.005		
	S82	275 - 350	135	0.003	0.003	0.004	0.005		
	Stainless Steel 400 Series	185 - 275	240	0.006	0.007	0.007	0.008		
	416, 420, etc.	275 - 350	180	0.005	0.006	0.006	0.007		
N /2	Stainless Steel 300 Series	135 - 185	220	0.004	0.005	0.005	0.006		
M	304, 316, 17-4PH, etc.	185 - 275	160	0.003	0.004	0.004	0.005		
	Super Duplex Stainless Steel	135 - 185	125	0.003	0.003	0.003	0.004		
		185 - 275	100	0.002	0.002	0.003	0.003		

7xD Adjustment Example (0.80 Adjustment)

10xD and 12xD Adjustment Example (0.70 Adjustment)

Data • Adjustment Value	Speed/Feed (7xD)	Speed • Adjustment Value	Speed/Feed (10xD/12xD)
200 SFM • 0.80	= 160 SFM	200 SFM • 0.70	= 140 SFM
0.008 IPR • 0.80	= 0.0064 IPR	0.008 IPR • 0.70	= 0.0056 IPR

A WARNING Tool failure can cause serious injury. To prevent:

- When using holders without support bushing, use a short GEN3SYS holder to establish an initial hole that is a minimum of 2 diameters deep.

- Do not rotate tool holders more than 50 RPM unless it is engaged with the workpiece or fixture.

Visit www.alliedmachine.com/DeepHoleGuidelines for the most up-to-date information and procedures. Factory technical assistance is available for your specific applications through our Application Engineering Team. ext: 7611 | email: appeng@alliedmachine.com

				Feed Rate (IPI	R) by Diameter				
15 series 0.5906" - 0.6298"	16 series 0.6299" - 0.6692"	17 series 0.6693" - 0.7086"	18 series 0.7087" - 0.7873"	20 series 0.7874" - 0.8660"	22 series 0.8661" - 0.9448"	24 series 0.9449" - 1.0235"	26 series 1.0236" - 1.1416"	29 series 1.1417" - 1.2597"	32 series 1.2598" - 1.3780"
0.015	0.016	0.017	0.019	0.021	0.022	0.023	0.024	0.025	0.026
0.014	0.015	0.016	0.017	0.019	0.020	0.021	0.022	0.023	0.024
0.012	0.013	0.014	0.016	0.018	0.019	0.020	0.021	0.022	0.023
0.015	0.016	0.017	0.019	0.021	0.022	0.023	0.024	0.025	0.026
0.014	0.015	0.016	0.018	0.019	0.020	0.021	0.022	0.023	0.024
0.013	0.014	0.015	0.017	0.018	0.019	0.020	0.021	0.022	0.023
0.011	0.012	0.013	0.015	0.016	0.017	0.018	0.019	0.020	0.021
0.014	0.015	0.016	0.018	0.020	0.021	0.022	0.023	0.024	0.025
0.013	0.014	0.015	0.017	0.019	0.020	0.021	0.022	0.023	0.024
0.012	0.013	0.014	0.016	0.018	0.019	0.020	0.021	0.022	0.023
0.011	0.012	0.013	0.015	0.016	0.017	0.018	0.019	0.020	0.021
0.014	0.015	0.016	0.018	0.020	0.021	0.022	0.023	0.024	0.025
0.013	0.014	0.015	0.017	0.019	0.020	0.021	0.022	0.023	0.024
0.012	0.013	0.014	0.016	0.018	0.019	0.020	0.021	0.022	0.023
0.010	0.011	0.012	0.014	0.015	0.016	0.017	0.018	0.019	0.020
0.009	0.010	0.011	0.013	0.014	0.015	0.016	0.017	0.018	0.019
0.011	0.012	0.013	0.014	0.015	0.016	0.017	0.018	0.019	0.020
0.010	0.011	0.011	0.012	0.013	0.014	0.015	0.016	0.017	0.018
0.009	0.010	0.010	0.011	0.012	0.013	0.014	0.015	0.016	0.017
0.013	0.015	0.015	0.017	0.019	0.021	0.022	0.023	0.024	0.025
0.012	0.013	0.014	0.015	0.017	0.019	0.020	0.021	0.022	0.023
0.011	0.012	0.013	0.014	0.015	0.017	0.019	0.020	0.021	0.022
0.008	0.009	0.009	0.010	0.011	0.012	0.013	0.014	0.015	0.016
0.007	0.008	0.008	0.009	0.010	0.011	0.012	0.013	0.014	0.015
0.008	0.009	0.009	0.010	0.011	0.011	0.012	0.012	0.013	0.014
0.007	0.008	0.008	0.009	0.010	0.010	0.011	0.011	0.012	0.013
0.008	0.009	0.009	0.010	0.011	0.011	0.012	0.012	0.013	0.014
0.007	0.008	0.008	0.009	0.010	0.010	0.011	0.011	0.012	0.012
0.006	0.006	0.007	0.007	0.008	0.008	0.009	0.010	0.011	0.012
0.005	0.006	0.006	0.006	0.007	0.008	0.008	0.009	0.010	0.011
0.008	0.009	0.010	0.011	0.012	0.013	0.014	0.015	0.016	0.017
0.007	0.008	0.009	0.010	0.011	0.012	0.013	0.014	0.015	0.016
0.006	0.007	0.007	0.008	0.008	0.009	0.009	0.010	0.010	0.011
0.005	0.006	0.006	0.007	0.007	0.008	0.008	0.009	0.009	0.010
0.004	0.005	0.005	0.006	0.006	0.007	0.008	0.008	0.008	0.010
0.004	0.004	0.005	0.005	0.006	0.006	0.007	0.007	0.008	0.008

	Stub, 3	xD, 5xD	7)	κD	10xD, 12xD		
Series	Pressure PSI	Flow Rate GPM	Pressure PSI	Flow Rate GPM	Pressure PSI	Flow Rate GPM	
11	450	5	600	8	800	10	
12	450	5	600	8	800	10	
13	400	6	500	9.5	750	12	
14	400	7	500	9.5	750	12	
15	380	7	475	11	700	14	
16	380	8	475	12	700	15	
17	350	8	450	12.5	650	16.5	
18	350	9	450	12.5	650	16.5	
20	300	10	400	13	600	18	
22	300	11	400	14	600	18	
24	300	11	400	14	600	18	
26	300	12	400	16	600	20	
29	300	12	400	16	600	20	
32	300	12	400	16	600	20	

Recommended Drilling Data | Imperial (inch)

GEN3SYS XT Pro

					Feed Rate (IPR) by Diameter					
ISO	Material	Hardness (BHN)	Speed (SFM)	11 series 0.4331" - 0.4723"	12 series 0.4724" - 0.5117"	13 series 0.5118" - 0.5511"	14 series 0.5512" - 0.5905"			
	Wear Plate	400	160	0.005	0.005	0.006	0.006			
	Hardox [®] , AR400, T-1, etc.	500	130	0.004	0.004	0.005	0.006			
Η		600	90	0.004	0.004	0.004	0.005			
	Hardened Steel	300 - 400	170	0.005	0.005	0.006	0.006			
		400 - 500	130	0.004	0.004	0.005	0.006			
	SG / Nodular Cast Iron	120 - 150	550	0.010	0.012	0.013	0.014			
		150 - 200	520	0.010	0.011	0.012	0.013			
		200 - 220	465	0.008	0.010	0.011	0.012			
		220 - 260	405	0.008	0.009	0.010	0.011			
V		260 - 320	365	0.008	0.008	0.009	0.010			
K	Grey / White Iron	120 - 150	575	0.012	0.013	0.014	0.015			
		150 - 200	550	0.011	0.012	0.013	0.014			
		200 - 220	495	0.010	0.011	0.012	0.013			
		220 - 260	425	0.009	0.010	0.011	0.012			
		260 - 320	380	0.009	0.010	0.011	0.012			
	Cast Aluminum	30	1150	0.012	0.013	0.014	0.015			
		180	860	0.011	0.012	0.013	0.014			
NI	Wrought Aluminum	30	1600	0.013	0.015	0.016	0.017			
Ν		180	1150	0.012	0.014	0.015	0.016			
	Aluminum Bronze	100 - 200	415	0.010	0.011	0.012	0.012			
		200 - 250	335	0.008	0.009	0.010	0.011			
	Brass	100	755	0.010	0.012	0.013	0.014			
	Copper	60	490	0.003	0.003	0.003	0.004			

7xD Adjustment Example (0.80 Adjustment)

10xD and 12xD Adjustment Example (0.70 Adjustment)

Data • Adjustment Value	Speed/Feed (7xD)	Speed • Adjustment Value	Speed/Feed (10xD/12xD)
200 SFM • 0.80	= 160 SFM	200 SFM • 0.70	= 140 SFM
0.008 IPR • 0.80	= 0.0064 IPR	0.008 IPR • 0.70	= 0.0056 IPR

A WARNING Tool failure can cause serious injury. To prevent:

- When using holders without support bushing, use a short GEN3SYS holder to establish an initial hole that is a minimum of 2 diameters deep.

- Do not rotate tool holders more than 50 RPM unless it is engaged with the workpiece or fixture.

Visit www.alliedmachine.com/DeepHoleGuidelines for the most up-to-date information and procedures. Factory technical assistance is available for your specific applications through our Application Engineering Team. ext: 7611 | email: appeng@alliedmachine.com

0.5906" - 0. 0.6298" 0	6299" - 0.6 .6692" 0.	7 series 6693" -	18 series	20 series					
0.007		.7086"	0.7087" - 0.7873"	0.7874" - 0.8660"	22 series 0.8661" - 0.9448"	24 series 0.9449" - 1.0235"	26 series 1.0236" - 1.1416"	29 series 1.1417" - 1.2597"	32 series 1.2598" - 1.3780"
0.007	0.008 0	0.009	0.010	0.010	0.010	0.011	0.011	0.012	0.012
0.006	0.007 (0.008	0.009	0.010	0.010	0.010	0.010	0.011	0.011
0.006	0.006 (0.007	0.008	0.009	0.009	0.010	0.010	0.010	0.010
0.007	0.008 (0.008	0.009	0.010	0.010	0.010	0.010	0.011	0.011
0.006	0.007 (0.008	0.008	0.009	0.009	0.010	0.010	0.010	0.010
0.015	0.016 (0.018	0.020	0.020	0.022	0.022	0.024	0.025	0.026
		0.013	0.019	0.020	0.022	0.022	0.024	0.023	0.020
		0.017	0.015	0.019	0.020	0.022	0.022	0.024	0.024
		0.015	0.017	0.018	0.019	0.020	0.020	0.022	0.022
		0.013	0.015	0.017	0.018	0.019	0.020	0.020	0.021
		0.019	0.021	0.022	0.023	0.024	0.025	0.026	0.021
		0.018	0.020	0.021	0.022	0.023	0.024	0.025	0.026
		0.017	0.020	0.020	0.021	0.022	0.023	0.024	0.025
0.013	0.014 (0.016	0.018	0.019	0.020	0.021	0.022	0.023	0.024
0.013	0.014 (0.015	0.017	0.018	0.019	0.020	0.021	0.022	0.023
0.016	0.017 (0.018	0.019	0.020	0.021	0.022	0.023	0.024	0.025
		0.017	0.018	0.019	0.020	0.021	0.022	0.023	0.023
		0.020	0.022	0.023	0.024	0.026	0.027	0.029	0.030
		0.019	0.021	0.022	0.023	0.025	0.026	0.028	0.029
		0.015	0.015	0.016	0.017	0.018	0.019	0.019	0.019
		0.013	0.014	0.015	0.016	0.017	0.018	0.018	0.019
		0.017	0.019	0.020	0.022	0.023	0.024	0.026	0.026
		0.006	0.007	0.008	0.008	0.008	0.010	0.010	0.011

	Stub, 3	xD, 5xD	7xD		10xD,	12xD
Series	Pressure PSI	Flow Rate GPM	Pressure PSI	Flow Rate GPM	Pressure PSI	Flow Rate GPM
11	450	5	600	8	800	10
12	450	5	600	8	800	10
13	400	6	500	9.5	750	12
14	400	7	500	9.5	750	12
15	380	7	475	11	700	14
16	380	8	475	12	700	15
17	350	8	450	12.5	650	16.5
18	350	9	450	12.5	650	16.5
20	300	10	400	13	600	18
22	300	11	400	14	600	18
24	300	11	400	14	600	18
26	300	12	400	16	600	20
29	300	12	400	16	600	20
32	300	12	400	16	600	20

Recommended Drilling Data | Imperial (inch)

GEN3SYS XT

				Feed Rate (IPR) by Diameter					
ISO	Material	Hardness (BHN)	Speed (SFM)	11 series 0.4331" - 0.4723"	12 series 0.4724" - 0.5117"	13 series 0.5118" - 0.5511"	14 series 0.5512" - 0.5905"		
	Free-Machining Steel	100 - 150	480	0.009	0.011	0.012	0.013		
	1118, 1215, 12L14, etc.	150 - 200	415	0.009	0.010	0.011	0.012		
		200 - 250	390	0.007	0.008	0.009	0.010		
	Low-Carbon Steel	85 - 125	450	0.010	0.011	0.012	0.013		
	1010, 1020, 1025, 1522, 1144, etc.	125 - 175	390	0.009	0.010	0.011	0.012		
		175 - 225	355	0.008	0.009	0.010	0.011		
		225 - 275	310	0.006	0.007	0.008	0.009		
	Medium-Carbon Steel	125 - 175	390	0.009	0.010	0.011	0.012		
	1030, 1040, 1050, 1527, 1140, 1151, etc.	175 - 225	355	0.008	0.009	0.010	0.011		
		225 - 275	310	0.007	0.008	0.009	0.010		
		275 - 325	265	0.006	0.007	0.008	0.009		
_	Alloy Steel	125 - 175	375	0.009	0.010	0.011	0.012		
Ρ	4140, 5140, 8640, etc.	175 - 225	345	0.008	0.009	0.010	0.011		
		225 - 275	310	0.007	0.008	0.009	0.010		
		275 - 325	285	0.006	0.006	0.007	0.008		
		325 - 375	255	0.006	0.006	0.006	0.007		
	High-Strength Alloy	225 - 300	230	0.007	0.008	0.009	0.010		
	4340, 4330V, 300M, etc.	300 - 350	205	0.006	0.006	0.007	0.008		
		350 - 400	185	0.005	0.006	0.006	0.007		
	Structural Steel	100 - 150	355	0.009	0.010	0.011	0.012		
	A36, A285, A516, etc.	150 - 250	285	0.007	0.008	0.009	0.010		
		250 - 350	265	0.006	0.007	0.008	0.009		
	Tool Steel	150 - 200	255	0.006	0.006	0.006	0.007		
	H-13, H-21, A-4, 0-2, S-3, etc.	200 - 250	195	0.005	0.006	0.006	0.006		
	High-Temp Alloy	140 - 220	120	0.006	0.006	0.006	0.007		
	Hastelloy B, Inconel 600, etc.	220 - 310	95	0.005	0.006	0.006	0.006		
~	Titanium Alloy	140 - 220	140	0.005	0.006	0.006	0.007		
S	-	220 - 310	110	0.004	0.005	0.006	0.006		
	Aerospace Alloy	185 - 275	145	0.004	0.004	0.005	0.005		
	S82	275 - 350	120	0.003	0.003	0.004	0.005		
	Stainless Steel 400 Series	185 - 275	240	0.006	0.007	0.007	0.008		
	416, 420, etc.	275 - 350	185	0.005	0.006	0.006	0.007		
0.4	Stainless Steel 300 Series	135 - 185	220	0.004	0.005	0.005	0.006		
Μ	304, 316, 17-4PH, etc.	185 - 275	160	0.003	0.004	0.004	0.005		
	Super Duplex Stainless Steel	135 - 185	125	0.003	0.003	0.003	0.004		
		185 - 275	100	0.002	0.002	0.003	0.003		

7xD Adjustment Example (0.80 Adjustment)

Data • Adjustment Value	Speed/Feed (7xD)
200 SFM • 0.80	= 160 SFM
0.008 IPR • 0.80	= 0.0064 IPR

A WARNING Tool failure can cause serious injury. To prevent:

- When using holders without support bushing, use a short GEN3SYS holder to establish an initial hole that is a minimum of 2 diameters deep.

- Do not rotate tool holders more than 50 RPM unless it is engaged with the workpiece or fixture.

Visit www.alliedmachine.com/DeepHoleGuidelines for the most up-to-date information and procedures. Factory technical assistance is available for your specific applications through our Application Engineering Team. ext: 7611 | email: appeng@alliedmachine.com

	Feed Rate (IPR) by Diameter										
15 series 0.5906" - 0.6298"	16 series 0.6299" - 0.6692"	17 series 0.6693" - 0.7086"	18 series 0.7087" - 0.7873"	20 series 0.7874" - 0.8660"	22 series 0.8661" - 0.9448"	24 series 0.9449" - 1.0235"	26 series 1.0236" - 1.1416"	29 series 1.1417" - 1.2597"	32 series 1.2598" - 1.3780"		
0.014	0.015	0.016	0.017	0.019	0.020	0.021	0.022	0.023	0.024		
0.013	0.014	0.015	0.016	0.017	0.018	0.019	0.020	0.021	0.022		
0.011	0.012	0.013	0.015	0.017	0.017	0.018	0.019	0.020	0.021		
0.014	0.015	0.016	0.017	0.019	0.020	0.021	0.022	0.023	0.024		
0.013	0.014	0.015	0.016	0.017	0.018	0.019	0.020	0.021	0.022		
0.012	0.013	0.014	0.015	0.016	0.017	0.018	0.019	0.020	0.021		
0.010	0.011	0.012	0.014	0.015	0.016	0.017	0.017	0.018	0.019		
0.013	0.014	0.015	0.017	0.018	0.019	0.020	0.021	0.022	0.023		
0.012	0.013	0.014	0.016	0.017	0.018	0.019	0.020	0.021	0.022		
0.011	0.012	0.013	0.015	0.016	0.017	0.018	0.019	0.020	0.021		
0.010	0.011	0.012	0.014	0.015	0.016	0.017	0.017	0.018	0.019		
0.013	0.014	0.015	0.017	0.018	0.019	0.020	0.021	0.022	0.023		
0.012	0.013	0.014	0.016	0.017	0.018	0.019	0.020	0.021	0.022		
0.011	0.012	0.013	0.015	0.015	0.017	0.018	0.019	0.020	0.021		
0.009	0.010	0.011	0.013	0.014	0.015	0.016	0.017	0.018	0.018		
0.008	0.009	0.010	0.012	0.013	0.014	0.015	0.016	0.017	0.017		
0.010	0.011	0.012	0.013	0.014	0.015	0.016	0.017	0.017	0.018		
0.009	0.010	0.010	0.011	0.012	0.013	0.014	0.015	0.016	0.017		
0.008	0.009	0.009	0.010	0.011	0.012	0.013	0.014	0.015	0.016		
0.012	0.014	0.014	0.016	0.017	0.019	0.020	0.021	0.022	0.023		
0.011	0.012	0.013	0.014	0.016	0.017	0.018	0.019	0.020	0.021		
0.010	0.011	0.012	0.013	0.014	0.016	0.017	0.018	0.019	0.020		
0.007	0.008	0.008	0.009	0.010	0.011	0.012	0.013	0.014	0.015		
0.006	0.007	0.007	0.008	0.009	0.010	0.011	0.012	0.013	0.014		
0.007	0.008	0.008	0.009	0.010	0.010	0.011	0.011	0.012	0.013		
0.006	0.007	0.007	0.008	0.009	0.009	0.010	0.010	0.011	0.012		
0.007	0.008	0.008	0.009	0.010	0.010	0.011	0.011	0.012	0.013		
0.006	0.007	0.007	0.008	0.009	0.009	0.010	0.010	0.011	0.011		
0.006	0.006	0.006	0.006	0.007	0.007	0.008	0.009	0.010	0.011		
0.005	0.006	0.006	0.006	0.006	0.007	0.007	0.008	0.009	0.010		
0.008	0.009	0.010	0.011	0.012	0.013	0.014	0.015	0.016	0.017		
0.007	0.008	0.009	0.010	0.011	0.012	0.013	0.014	0.015	0.016		
0.006	0.007	0.007	0.008	0.008	0.009	0.009	0.010	0.010	0.011		
0.005	0.006	0.006	0.007	0.007	0.008	0.008	0.009	0.009	0.010		
0.004	0.005	0.005	0.006	0.006	0.007	0.008	0.008	0.008	0.010		
0.004	0.004	0.005	0.005	0.006	0.006	0.007	0.007	0.008	0.008		

	ЗхD	, 5xD	7)	٢D	10xD, 12xD		
Series	Pressure PSI	Flow Rate GPM	Pressure PSI	Flow Rate GPM	Pressure PSI	Flow Rate GPM	
11	450	5	600	8	800	10	
12	450	5	600	8	800	10	
13	400	6	500	9.5	750	12	
14	400	7	500	9.5	750	12	
15	380	7	475	11	700	14	
16	380	8	475	12	700	15	
17	350	8	450	12.5	650	16.5	
18	350	9	450	12.5	650	16.5	
20	300	10	400	13	600	18	
22	300	11	400	14	600	18	
24	300	11	400	14	600	18	
26	300	12	400	16	600	20	
29	300	12	400	16	600	20	
32	300	12	400	16	600	20	

Recommended Drilling Data | Imperial (inch)

GEN3SYS XT

					Feed Rate (IPF	R) by Diameter	
ISO	Material	Hardness (BHN)	Speed (SFM)	11 series 0.4331" - 0.4723"	12 series 0.4724" - 0.5117"	13 series 0.5118" - 0.5511"	14 series 0.5512" - 0.5905"
	Wear Plate	400	145	0.005	0.005	0.006	0.006
	Hardox [®] , AR400, T-1, etc.	500	110	0.004	0.004	0.005	0.006
Η		600	80	0.004	0.004	0.004	0.005
	Hardened Steel	300 - 400	155	0.005	0.005	0.006	0.006
		400 - 500	120	0.004	0.004	0.005	0.006
	SG / Nodular Cast Iron	120 - 150	480	0.009	0.011	0.012	0.013
		150 - 200	450	0.009	0.010	0.011	0.012
		200 - 220	400	0.007	0.009	0.010	0.011
		220 - 260	350	0.007	0.008	0.009	0.010
V		260 - 320	320	0.007	0.007	0.008	0.009
К	Grey / White Iron	120 - 150	500	0.011	0.012	0.013	0.014
		150 - 200	480	0.010	0.011	0.012	0.013
		200 - 220	430	0.009	0.010	0.011	0.012
		220 - 260	370	0.008	0.009	0.010	0.011
		260 - 320	335	0.008	0.009	0.010	0.011
	Cast Aluminum	30	1000	0.011	0.012	0.013	0.014
		180	750	0.010	0.011	0.012	0.013
N	Wrought Aluminum	30	1400	0.012	0.014	0.015	0.016
Ν		180	1000	0.011	0.013	0.014	0.015
	Aluminum Bronze	100 - 200	360	0.009	0.010	0.011	0.011
		200 - 250	295	0.007	0.008	0.009	0.010
	Brass	100	660	0.009	0.011	0.012	0.013
	Copper	60	425	0.003	0.003	0.003	0.004

7xD Adjustment Example (0.80 Adjustment)

Data • Adjustment Value	Speed/Feed (7xD)
200 SFM • 0.80	= 160 SFM
0.008 IPR • 0.80	= 0.0064 IPR

/ WARNING Tool failure can cause serious injury. To prevent:

- When using holders without support bushing, use a short GEN3SYS holder to establish an initial hole that is a minimum of 2 diameters deep.

- Do not rotate tool holders more than 50 RPM unless it is engaged with the workpiece or fixture.

Visit www.alliedmachine.com/DeepHoleGuidelines for the most up-to-date information and procedures. Factory technical assistance is available for your specific applications through our Application Engineering Team. ext: 7611 | email: appeng@alliedmachine.com

	Feed Rate (IPR) by Diameter												
15 series 0.5906" - 0.6298"	16 series 0.6299" - 0.6692"	17 series 0.6693" - 0.7086"	18 series 0.7087" - 0.7873"	20 series 0.7874" - 0.8660"	22 series 0.8661" - 0.9448"	24 series 0.9449" - 1.0235"	26 series 1.0236" - 1.1416"	29 series 1.1417" - 1.2597"	32 series 1.2598" - 1.3780"				
0.006	0.007	0.008	0.009	0.009	0.009	0.010	0.010	0.011	0.011				
0.006	0.006	0.007	0.008	0.009	0.009	0.009	0.009	0.010	0.010				
0.006	0.006	0.006	0.007	0.008	0.008	0.009	0.009	0.009	0.009				
0.006	0.007	0.007	0.008	0.009	0.009	0.009	0.009	0.010	0.010				
0.006	0.006	0.007	0.007	0.008	0.008	0.009	0.009	0.009	0.009				
0.014	0.015	0.017	0.018	0.018	0.020	0.020	0.022	0.023	0.024				
0.013	0.014	0.016	0.017	0.018	0.018	0.020	0.020	0.022	0.022				
0.012	0.013	0.015	0.016	0.017	0.018	0.018	0.020	0.020	0.021				
0.011	0.012	0.014	0.015	0.016	0.017	0.018	0.018	0.020	0.020				
0.010	0.011	0.013	0.014	0.015	0.016	0.017	0.018	0.018	0.019				
0.015	0.016	0.018	0.019	0.020	0.021	0.022	0.023	0.024	0.025				
0.014	0.015	0.017	0.018	0.019	0.020	0.021	0.022	0.023	0.024				
0.013	0.014	0.016	0.018	0.018	0.019	0.020	0.021	0.022	0.023				
0.012	0.013	0.015	0.017	0.017	0.018	0.019	0.020	0.021	0.022				
0.012	0.013	0.014	0.016	0.016	0.017	0.018	0.019	0.020	0.021				
0.015	0.016	0.017	0.017	0.018	0.019	0.020	0.021	0.022	0.023				
0.014	0.015	0.016	0.016	0.017	0.018	0.019	0.020	0.021	0.021				
0.017	0.017	0.018	0.020	0.021	0.022	0.024	0.025	0.027	0.028				
0.016	0.016	0.017	0.019	0.020	0.021	0.023	0.024	0.026	0.027				
0.012	0.013	0.014	0.014	0.015	0.016	0.017	0.017	0.017	0.017				
0.011	0.011	0.012	0.013	0.014	0.015	0.016	0.016	0.016	0.016				
0.014	0.015	0.016	0.017	0.018	0.020	0.021	0.022	0.024	0.024				
0.005	0.006	0.006	0.006	0.007	0.007	0.007	0.009	0.009	0.010				

	ЗхD	, 5xD	7)	٢D	10xD, 12xD		
Series	Pressure PSI	Flow Rate GPM	Pressure PSI	Flow Rate GPM	Pressure PSI	Flow Rate GPM	
11	450	5	600	8	800	10	
12	450	5	600	8	800	10	
13	400	6	500	9.5	750	12	
14	400	7	500	9.5	750	12	
15	380	7	475	11	700	14	
16	380	8	475	12	700	15	
17	350	8	450	12.5	650	16.5	
18	350	9	450	12.5	650	16.5	
20	300	10	400	13	600	18	
22	300	11	400	14	600	18	
24	300	11	400	14	600	18	
26	300	12	400	16	600	20	
29	300	12	400	16	600	20	
32	300	12	400	16	600	20	

Recommended Drilling Data | Metric (mm)

GEN3SYS XT Pro

				Feed Rate (mm/rev) by Diameter					
ISO	Material	Hardness (BHN)	Speed (M/mm)	11 series 11.00 mm - 11.99 mm	12 series 12.00 mm - 12.99 mm	13 series 13.00 mm - 13.99 mm	14 series 14.00 mm - 14.99 mm		
	Free-Machining Steel	100 - 150	168	0.28	0.30	0.33	0.36		
	1118, 1215, 12L14, etc.	150 - 200	145	0.25	0.28	0.30	0.33		
		200 - 250	130	0.20	0.23	0.25	0.28		
	Low-Carbon Steel	85 - 125	158	0.28	0.3	0.33	0.36		
	1010, 1020, 1025, 1522, 1144, etc.	125 - 175	137	0.25	0.28	0.30	0.33		
		175 - 225	125	0.23	0.25	0.28	0.30		
		225 - 275	107	0.18	0.20	0.23	0.25		
	Medium-Carbon Steel	125 - 175	137	0.25	0.28	0.30	0.33		
	1030, 1040, 1050, 1527, 1140, 1151, etc.	175 - 225	125	0.23	0.25	0.28	0.30		
		225 - 275	107	0.20	0.23	0.25	0.28		
		275 - 325	91	0.18	0.20	0.23	0.25		
	Alloy Steel	125 - 175	126	0.25	0.28	0.30	0.33		
Ρ	4140, 5140, 8640, etc.	175 - 225	116	0.23	0.25	0.28	0.30		
		225 - 275	104	0.20	0.23	0.25	0.28		
		275 - 325	94	0.15	0.18	0.20	0.23		
		325 - 375	85	0.15	0.15	0.18	0.20		
	High-Strength Alloy	225 - 300	76	0.20	0.23	0.25	0.28		
	4340, 4330V, 300M, etc.	300 - 350	69	0.15	0.18	0.20	0.23		
		350 - 400	61	0.13	0.18	0.18	0.20		
	Structural Steel	100 - 150	125	0.25	0.28	0.30	0.33		
	A36, A285, A516, etc.	150 - 250	101	0.20	0.23	0.25	0.28		
		250 - 350	93	0.18	0.20	0.23	0.25		
	Tool Steel	150 - 200	81	0.15	0.18	0.18	0.20		
	H-13, H-21, A-4, 0-2, S-3, etc.	200 - 250	62	0.13	0.15	0.15	0.18		
	High-Temp Alloy	140 - 220	40	0.15	0.18	0.18	0.20		
	Hastelloy B, Inconel 600, etc.	220 - 310	30	0.13	0.15	0.15	0.18		
<u> </u>	Titanium Alloy	140 - 220	43	0.13	0.15	0.18	0.20		
S		220 - 310	34	0.10	0.13	0.15	0.18		
	Aerospace Alloy	185 - 275	50	0.10	0.10	0.12	0.14		
	S82	275 - 350	41	0.09	0.09	0.10	0.12		
	Stainless Steel 400 Series	185 - 275	73	0.15	0.18	0.18	0.20		
	416, 420, etc.	275 - 350	56	0.13	0.15	0.15	0.18		
	Stainless Steel 300 Series	135 - 185	64	0.10	0.13	0.13	0.15		
M	304, 316, 17-4PH, etc.	185 - 275	47	0.08	0.10	0.10	0.13		
	Super Duplex Stainless Steel	135 - 185	38	0.08	0.08	0.08	0.10		
		185 - 275	30	0.05	0.05	0.08	0.08		

7xD Adjustment Example (0.80 Adjustment)

10xD and 12xD Adjustment Example (0.70 Adjustment)

Data • Adjustment Value	Speed/Feed (7xD)	Speed • Adjustment Value	Speed/Feed (10xD/12xD)
61 M/min • 0.80	= 48.8 M/min	61 M/min • 0.70	= 42.7 M/min
0.20 mm/rev • 0.80	= 0.16 mm/rev	0.20 mm/rev • 0.70	= 0.14 mm/rev

• WARNING Tool failure can cause serious injury. To prevent:

- When using holders without support bushing, use a short GEN3SYS holder to establish an initial hole that is a minimum of 2 diameters deep.

- Do not rotate tool holders more than 50 RPM unless it is engaged with the workpiece or fixture.

Visit www.alliedmachine.com/DeepHoleGuidelines for the most up-to-date information and procedures. Factory technical assistance is available for your specific applications through our Application Engineering Team. ext: 7611 | email: appeng@alliedmachine.com

	Feed Rate (mm/rev) by Diameter												
15 series 15.00 mm - 15.99 mm	16 series 16.00 mm - 16.99 mm	17 series 17.00 mm - 17.99 mm	18 series 18.00 mm - 19.99 mm	20 series 20.00 mm - 21.99 mm	22 series 22.00 mm - 23.99 mm	24 series 24.00 mm - 25.99 mm	26 series 26.00 mm - 28.99 mm	29 series 29.00 mm - 31.99 mm	32 series 32.00 mm - 35.00 mm				
0.38	0.41	0.43	0.48	0.53	0.56	0.58	0.61	0.64	0.66				
0.36	0.38	0.41	0.43	0.48	0.51	0.53	0.56	0.58	0.61				
0.30	0.33	0.36	0.41	0.46	0.48	0.51	0.53	0.56	0.58				
0.38	0.41	0.43	0.48	0.53	0.56	0.58	0.61	0.64	0.66				
0.36	0.38	0.41	0.46	0.48	0.51	0.53	0.56	0.58	0.61				
0.33	0.36	0.38	0.42	0.46	0.48	0.51	0.53	0.56	0.58				
0.28	0.30	0.33	0.38	0.41	0.42	0.46	0.48	0.51	0.53				
0.36	0.38	0.41	0.46	0.51	0.53	0.56	0.58	0.61	0.64				
0.33	0.36	0.38	0.43	0.48	0.51	0.53	0.56	0.58	0.61				
0.30	0.33	0.36	0.41	0.46	0.48	0.51	0.53	0.56	0.58				
0.28	0.30	0.33	0.38	0.41	0.43	0.46	0.48	0.51	0.53				
0.36	0.38	0.41	0.46	0.51	0.53	0.56	0.58	0.61	0.64				
0.33	0.36	0.38	0.43	0.48	0.51	0.53	0.56	0.58	0.61				
0.30	0.33	0.36	0.41	0.46	0.48	0.51	0.53	0.56	0.58				
0.25	0.28	0.30	0.36	0.38	0.41	0.43	0.46	0.48	0.51				
0.23	0.25	0.28	0.33	0.36	0.38	0.41	0.43	0.46	0.48				
0.28	0.30	0.33	0.36	0.38	0.41	0.43	0.46	0.48	0.51				
0.25	0.28	0.28	0.30	0.33	0.36	0.38	0.41	0.43	0.46				
0.23	0.25	0.25	0.28	0.30	0.33	0.36	0.38	0.41	0.43				
0.33	0.38	0.38	0.43	0.48	0.53	0.56	0.58	0.61	0.64				
0.30	0.33	0.36	0.38	0.43	0.48	0.51	0.53	0.56	0.58				
0.28	0.30	0.33	0.36	0.38	0.43	0.48	0.51	0.53	0.56				
0.20	0.23	0.23	0.25	0.28	0.30	0.33	0.36	0.38	0.41				
0.18	0.20	0.20	0.23	0.25	0.28	0.30	0.33	0.36	0.38				
0.20	0.23	0.23	0.25	0.28	0.28	0.30	0.30	0.33	0.36				
0.18	0.20	0.20	0.23	0.25	0.25	0.28	0.28	0.30	0.33				
0.20	0.23	0.23	0.25	0.28	0.28	0.30	0.30	0.33	0.33				
0.18	0.20	0.20	0.23	0.25	0.25	0.28	0.28	0.30	0.30				
0.15	0.16	0.18	0.18	0.20	0.22	0.24	0.26	0.28	0.31				
0.14	0.15	0.16	0.16	0.18	0.20	0.22	0.24	0.26	0.29				
0.20	0.23	0.25	0.28	0.30	0.33	0.36	0.38	0.41	0.43				
0.18	0.20	0.23	0.25	0.28	0.30	0.33	0.36	0.38	0.41				
0.15	0.18	0.18	0.20	0.20	0.23	0.23	0.25	0.25	0.28				
0.13	0.15	0.15	0.18	0.18	0.20	0.20	0.23	0.23	0.25				
0.10	0.13	0.13	0.15	0.15	0.18	0.20	0.20	0.20	0.25				
0.10	0.10	0.13	0.13	0.15	0.15	0.18	0.18	0.20	0.20				

	Stub, 3	xD, 5xD	71	٢D	10xD, 12xD		
Series	Pressure BAR	Flow Rate LPM	Pressure BAR	Flow Rate LPM	Pressure BAR	Flow Rate LPM	
11	31	19	41	30	55	38	
12	31	19	41	30	55	38	
13	28	23	34	36	52	45	
14	28	26	34	36	52	45	
15	26	26	33	42	48	53	
16	26	30	33	45	48	57	
17	24	30	31	47	45	62	
18	24	34	31	47	45	62	
20	21	38	28	49	41	68	
22	21	42	28	53	41	68	
24	21	42	28	53	41	68	
26	21	45	28	61	41	76	
29	21	45	28	61	41	76	
32	21	45	28	61	41	76	

Recommended Drilling Data | Metric (mm)

GEN3SYS XT Pro

					Feed Rate (mm/rev) by Diameter					
ISO	Material	Hardness (BHN)	Speed (M/min)	11 series 11.00 mm - 11.99 mm	12 series 12.00 mm - 12.99 mm	13 series 13.00 mm - 13.99 mm	14 series 14.00 mm - 14.99 mm			
	Wear Plate	400	50	0.13	0.13	0.15	0.17			
	Hardox [®] , AR400, T-1, etc.	500	40	0.11	0.11	0.13	0.15			
Н		600	27	0.10	0.10	0.11	0.13			
	Hardened Steel	300 - 400	51	0.13	0.13	0.15	0.17			
		400 - 500	40	0.11	0.11	0.13	0.15			
	SG / Nodular Cast Iron	120 - 150	168	0.27	0.30	0.33	0.36			
		150 - 200	159	0.25	0.28	0.30	0.33			
		200 - 220	141	0.22	0.25	0.28	0.30			
		220 - 260	124	0.20	0.23	0.25	0.28			
к		260 - 320	112	0.20	0.21	0.23	0.25			
ĸ	Grey / White Iron	120 - 150	175	0.30	0.33	0.36	0.38			
		150 - 200	168	0.28	0.30	0.33	0.36			
		200 - 220	151	0.25	0.28	0.30	0.33			
		220 - 260	130	0.23	0.25	0.28	0.30			
		260 - 320	116	0.23	0.25	0.28	0.30			
	Cast Aluminum	30	351	0.30	0.33	0.36	0.38			
		180	262	0.28	0.30	0.33	0.36			
	Wrought Aluminum	30	488	0.33	0.38	0.41	0.43			
		180	351	0.30	0.36	0.38	0.41			
Ν	Aluminum Bronze	100 - 200	126	0.26	0.28	0.30	0.32			
		200 - 250	103	0.22	0.24	0.26	0.28			
	Brass	100	230	0.29	0.30	0.33	0.36			
	Copper	60	149	0.07	0.08	0.09	0.11			

7xD Adjustment Example (0.80 Adjustment)

10xD and 12xD Adjustment Example (0.70 Adjustment)

Data • Adjustment Value	Speed/Feed (7xD)	Speed • Adjustment Value	Speed/Feed (10xD/12xD)
61 M/min • 0.80	= 48.8 M/min	61 M/min • 0.70	= 42.7 M/min
0.20 mm/rev • 0.80	= 0.16 mm/rev	0.20 mm/rev • 0.70	= 0.14 mm/rev

• WARNING Tool failure can cause serious injury. To prevent:

- When using holders without support bushing, use a short GEN3SYS holder to establish an initial hole that is a minimum of 2 diameters deep.

- Do not rotate tool holders more than 50 RPM unless it is engaged with the workpiece or fixture.

Visit www.alliedmachine.com/DeepHoleGuidelines for the most up-to-date information and procedures. Factory technical assistance is available for your specific applications through our Application Engineering Team. ext: 7611 | email: appeng@alliedmachine.com

	Feed Rate (mm/rev) by Diameter												
15 series 15.00mm - 15.99mm	16 series 16.00 mm - 16.99 mm	17 series 17.00 mm - 17.99 mm	18 series 18.00 mm - 19.99 mm	20 series 20.00 mm - 21.99 mm	22 series 22.00 mm - 23.99 mm	24 series 24.00 mm - 25.99 mm	26 series 26.00 mm - 28.99 mm	29 series 29.00 mm - 31.99 mm	32 series 32.00 mm - 35.00 mm				
0.19	0.21	0.23	0.25	0.27	0.27	0.29	0.29	0.31	0.31				
0.17	0.19	0.21	0.23	0.25	0.25	0.27	0.27	0.29	0.29				
0.15	0.17	0.19	0.21	0.23	0.23	0.25	0.25	0.25	0.27				
0.19	0.21	0.22	0.23	0.25	0.25	0.27	0.27	0.29	0.29				
0.17	0.19	0.20	0.21	0.23	0.23	0.25	0.25	0.27	0.27				
0.38	0.41	0.46	0.51	0.53	0.56	0.58	0.61	0.64	0.66				
0.36	0.38	0.43	0.48	0.51	0.53	0.56	0.58	0.61	0.63				
0.33	0.36	0.41	0.46	0.48	0.51	0.53	0.56	0.58	0.60				
0.30	0.33	0.38	0.43	0.46	0.48	0.51	0.53	0.56	0.58				
0.28	0.30	0.36	0.38	0.43	0.46	0.48	0.51	0.53	0.55				
0.41	0.43	0.48	0.53	0.56	0.58	0.61	0.64	0.66	0.69				
0.38	0.41	0.46	0.51	0.53	0.56	0.58	0.61	0.64	0.66				
0.36	0.38	0.43	0.51	0.51	0.53	0.56	0.58	0.61	0.64				
0.33	0.36	0.41	0.46	0.48	0.51	0.53	0.56	0.58	0.61				
0.33	0.36	0.38	0.43	0.46	0.48	0.51	0.53	0.56	0.58				
0.41	0.43	0.46	0.48	0.51	0.53	0.56	0.58	0.61	0.64				
0.38	0.41	0.43	0.46	0.48	0.51	0.53	0.56	0.58	0.58				
0.46	0.48	0.51	0.53	0.56	0.61	0.66	0.69	0.74	0.76				
0.43	0.46	0.48	0.53	0.56	0.58	0.64	0.66	0.71	0.74				
0.34	0.36	0.38	0.40	0.42	0.44	0.46	0.48	0.48	0.50				
0.30	0.32	0.34	0.36	0.38	0.42	0.46	0.46	0.46	0.48				
0.38	0.41	0.43	0.48	0.53	0.56	0.60	0.63	0.66	0.66				
0.13	0.15	0.16	0.18	0.20	0.20	0.22	0.25	0.25	0.28				

	Stub, 3	xD, 5xD	7)	٢D	10xD, 12xD			
Series	Pressure BAR	Flow Rate LPM	Pressure BAR	Flow Rate LPM	Pressure BAR	Flow Rate LPM		
11	31	19	41	30	55	38		
12	31	19	41	30	55	38		
13	28	23	34	36	52	45		
14	28	26	34	36	52	45		
15	26	26	33	42	48	53		
16	26	30	33	45	48	57		
17	24	30	31	47	45	62		
18	24	34	31	47	45	62		
20	21	38	28	49	41	68		
22	21	42	28	53	41	68		
24	21	42	28	53	41	68		
26	21	45	28	61	41	76		
29	21	45	28	61	41	76		
32	21	45	28	61	41	76		

Recommended Drilling Data | Metric (mm)

GEN3SYS XT

					Feed Rate (mm/	rev) by Diameter	
ISO	Material	Hardness (BHN)	Speed (M/mm)	11 series 11.00 mm - 11.99 mm	12 series 12.00 mm - 12.99 mm	13 series 13.00 mm - 13.99 mm	14 series 14.00 mm - 14.99 mm
	Free-Machining Steel	100 - 150	146	0.23	0.28	0.30	0.33
	1118, 1215, 12L14, etc.	150 - 200	126	0.23	0.26	0.28	0.30
		200 - 250	119	0.19	0.21	0.23	0.26
	Low-Carbon Steel	85 - 125	137	0.26	0.28	0.30	0.33
	1010, 1020, 1025, 1522, 1144, etc.	125 - 175	119	0.23	0.26	0.28	0.30
		175 - 225	108	0.21	0.23	0.26	0.28
		225 - 275	95	0.16	0.19	0.21	0.23
	Medium-Carbon Steel	125 - 175	119	0.23	0.26	0.28	0.30
	1030, 1040, 1050, 1527, 1140, 1151, etc.	175 - 225	108	0.21	0.23	0.26	0.28
		225 - 275	95	0.19	0.21	0.23	0.26
		275 - 325	81	0.16	0.19	0.21	0.23
-	Alloy Steel	125 - 175	114	0.23	0.26	0.28	0.30
P	4140, 5140, 8640, etc.	175 - 225	105	0.21	0.23	0.26	0.28
		225 - 275	95	0.19	0.21	0.23	0.26
		275 - 325	87	0.14	0.16	0.19	0.21
		325 - 375	78	0.14	0.14	0.16	0.19
	High-Strength Alloy	225 - 300	70	0.19	0.21	0.23	0.26
	4340, 4330V, 300M, etc.	300 - 350	63	0.14	0.16	0.19	0.21
		350 - 400	56	0.12	0.14	0.16	0.19
	Structural Steel	100 - 150	108	0.23	0.26	0.28	0.30
	A36, A285, A516, etc.	150 - 250	87	0.19	0.21	0.23	0.26
		250 - 350	81	0.16	0.19	0.21	0.23
	Tool Steel	150 - 200	78	0.14	0.16	0.16	0.19
	H-13, H-21, A-4, 0-2, S-3, etc.	200 - 250	59	0.12	0.14	0.14	0.16
	High-Temp Alloy	140 - 220	37	0.14	0.16	0.16	0.19
	Hastelloy B, Inconel 600, etc.	220 - 310	29	0.12	0.14	0.14	0.16
	Titanium Alloy	140 - 220	42	0.12	0.14	0.16	0.19
S		220 - 310	33	0.09	0.12	0.14	0.16
	Aerospace Alloy	185 - 275	45	0.09	0.09	0.12	0.12
	S82	275 - 350	37	0.07	0.07	0.09	0.12
	Stainless Steel 400 Series	185 - 275	73	0.15	0.18	0.18	0.20
	416, 420, etc.	275 - 350	56	0.13	0.15	0.15	0.18
	Stainless Steel 300 Series	135 - 185	64	0.10	0.13	0.13	0.15
Μ	304, 316, 17-4PH, etc.	185 - 275	47	0.08	0.10	0.10	0.13
	Super Duplex Stainless Steel	135 - 185	38	0.08	0.08	0.08	0.10
		185 - 275	30	0.05	0.05	0.08	0.08

7xD Adjustment Example (0.80 Adjustment)

Data • Adjustment Value	Speed/Feed (7xD)
61 M/min • 0.80	= 48.8 M/min
0.20 mm/rev • 0.80	= 0.16 mm/rev

A WARNING Tool failure can cause serious injury. To prevent:

- When using holders without support bushing, use a short GEN3SYS holder to establish an initial hole that is a minimum of 2 diameters deep.

- Do not rotate tool holders more than 50 RPM unless it is engaged with the workpiece or fixture.

Visit www.alliedmachine.com/DeepHoleGuidelines for the most up-to-date information and procedures. Factory technical assistance is available for your specific applications through our Application Engineering Team. ext: 7611 | email: appeng@alliedmachine.com

	Feed Rate (mm/rev) by Diameter													
15 series 15.00 mm - 15.99 mm	16 series 16.00 mm - 16.99 mm	17 series 17.00 mm - 17.99 mm	18 series 18.00 mm - 19.99 mm	20 series 20.00 mm - 21.99 mm	22 series 22.00 mm - 23.99 mm	24 series 24.00 mm - 25.99 mm	26 series 26.00 mm - 28.99 mm	29 series 29.00 mm - 31.99 mm	32 series 32.00 mm - 35.00 mm					
0.35	0.37	0.40	0.44	0.49	0.51	0.54	0.56	0.58	0.61					
0.33	0.35	0.37	0.40	0.44	0.47	0.49	0.51	0.54	0.56					
0.28	0.30	0.33	0.37	0.42	0.44	0.47	0.49	0.51	0.54					
0.35	0.37	0.40	0.44	0.49	0.51	0.54	0.56	0.58	0.61					
0.33	0.35	0.37	0.41	0.44	0.47	0.49	0.51	0.54	0.56					
0.30	0.33	0.35	0.38	0.41	0.44	0.47	0.49	0.51	0.54					
0.26	0.28	0.30	0.35	0.37	0.40	0.42	0.44	0.47	0.49					
0.33	0.35	0.37	0.42	0.47	0.49	0.51	0.54	0.56	0.58					
0.30	0.33	0.35	0.40	0.44	0.47	0.49	0.51	0.54	0.56					
0.28	0.30	0.33	0.37	0.41	0.44	0.47	0.49	0.51	0.54					
0.26	0.28	0.30	0.35	0.37	0.40	0.42	0.44	0.47	0.49					
0.33	0.35	0.37	0.42	0.47	0.49	0.51	0.54	0.56	0.58					
0.30	0.33	0.35	0.40	0.44	0.47	0.49	0.51	0.54	0.56					
0.28	0.30	0.33	0.37	0.38	0.44	0.47	0.49	0.51	0.54					
0.23	0.26	0.28	0.33	0.35	0.37	0.40	0.42	0.46	0.47					
0.21	0.23	0.26	0.30	0.33	0.35	0.37	0.40	0.42	0.44					
0.26	0.28	0.30	0.33	0.35	0.37	0.40	0.42	0.44	0.47					
0.23	0.26	0.26	0.28	0.30	0.33	0.35	0.37	0.40	0.42					
0.21	0.23	0.23	0.26	0.28	0.30	0.33	0.35	0.37	0.40					
0.30	0.35	0.35	0.40	0.44	0.49	0.51	0.54	0.56	0.58					
0.28	0.30	0.33	0.35	0.40	0.44	0.47	0.49	0.51	0.54					
0.26	0.28	0.30	0.33	0.35	0.40	0.44	0.47	0.49	0.51					
0.19	0.21	0.21	0.23	0.26	0.28	0.30	0.33	0.35	0.37					
0.16	0.19	0.19	0.21	0.23	0.26	0.28	0.30	0.33	0.35					
0.19	0.21	0.21	0.23	0.26	0.26	0.28	0.28	0.30	0.33					
0.16	0.19	0.19	0.21	0.23	0.23	0.26	0.26	0.28	0.30					
0.19	0.21	0.21	0.23	0.26	0.26	0.28	0.28	0.30	0.33					
0.16	0.19	0.19	0.21	0.23	0.23	0.26	0.26	0.28	0.28					
0.14	0.14	0.16	0.16	0.19	0.19	0.21	0.23	0.26	0.28					
0.12	0.14	0.14	0.14	0.16	0.19	0.19	0.21	0.23	0.26					
0.20	0.23	0.25	0.28	0.30	0.33	0.36	0.38	0.41	0.43					
0.18	0.20	0.23	0.25	0.28	0.30	0.33	0.36	0.38	0.41					
0.15	0.18	0.18	0.20	0.20	0.23	0.23	0.25	0.25	0.28					
0.13	0.15	0.15	0.18	0.18	0.20	0.20	0.23	0.23	0.25					
0.10	0.13	0.13	0.15	0.15	0.18	0.20	0.20	0.20	0.25					
0.10	0.10	0.13	0.13	0.15	0.15	0.18	0.18	0.20	0.20					

	3xD,	, 5xD	71	٢D	10xD, 12xD			
Series	Pressure BAR	Flow Rate LPM	Pressure BAR	Flow Rate LPM	Pressure BAR	Flow Rate LPM		
11	31	19	41	30	55	38		
12	31	19	41	30	55	38		
13	28	23	34	36	52	45		
14	28	26	34	36	52	45		
15	26	26	33	42	48	53		
16	26	30	33	45	48	57		
17	24	30	31	47	45	62		
18	24	34	31	47	45	62		
20	21	38	28	49	41	68		
22	21	42	28	53	41	68		
24	21	42	28	53	41	68		
26	21	45	28	61	41	76		
29	21	45	28	61	41	76		
32	21	45	28	61	41	76		

Recommended Drilling Data | Metric (mm)

GEN3SYS XT

					Feed Rate (mm/rev) by Diameter							
ISO	Material	Hardness (BHN)	Speed (M/min)	11 series 11.00 mm - 11.99 mm	12 series 12.00 mm - 12.99 mm	13 series 13.00 mm - 13.99 mm	14 series 14.00 mm - 14.99 mm					
	Wear Plate	400	45	0.12	0.12	0.14	0.14					
	Hardox [®] , AR400, T-1, etc.	500	37	0.09	0.09	0.12	0.14					
Η		600	25	0.09	0.09	0.09	0.12					
	Hardened Steel	300 - 400	47	0.12	0.12	0.14	0.14					
		400 - 500	37	0.09	0.09	0.12	0.14					
	SG / Nodular Cast Iron	120 - 150	146	0.23	0.28	0.30	0.33					
		150 - 200	138	0.23	0.26	0.28	0.30					
		200 - 220	123	0.19	0.23	0.26	0.28					
		220 - 260	108	0.19	0.21	0.23	0.26					
к		260 - 320	97	0.19	0.19	0.21	0.23					
N	Grey / White Iron	120 - 150	152	0.28	0.30	0.33	0.35					
		150 - 200	146	0.26	0.28	0.30	0.33					
		200 - 220	131	0.23	0.26	0.28	0.30					
		220 - 260	113	0.21	0.23	0.26	0.28					
		260 - 320	102	0.21	0.23	0.26	0.28					
	Cast Aluminum	30	300	0.28	0.30	0.33	0.35					
		180	225	0.26	0.28	0.30	0.33					
	Wrought Aluminum	30	425	0.30	0.35	0.37	0.40					
N		180	300	0.28	0.33	0.35	0.37					
	Aluminum Bronze	100 - 200	110	0.23	0.26	0.28	0.28					
		200 - 250	90	0.19	0.21	0.23	0.26					
	Brass	100	200	0.23	0.28	0.30	0.33					
	Copper	60	130	0.07	0.07	0.07	0.09					

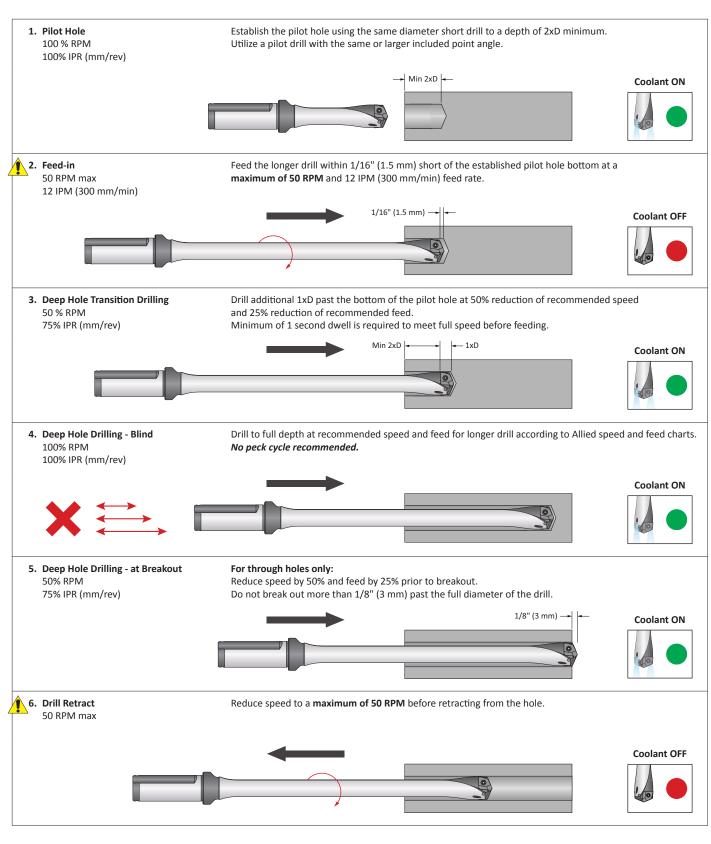
7xD Adjustment Example (0.80 Adjustment)

Data • Adjustment Value	Speed/Feed (7xD)
61 M/min • 0.80	= 48.8 M/min
0.20 mm/rev • 0.80	= 0.16 mm/rev

A WARNING Tool failure can cause serious injury. To prevent:

- When using holders without support bushing, use a short GEN3SYS holder to establish an initial hole that is a minimum of 2 diameters deep.

- Do not rotate tool holders more than 50 RPM unless it is engaged with the workpiece or fixture.


Visit www.alliedmachine.com/DeepHoleGuidelines for the most up-to-date information and procedures. Factory technical assistance is available for your specific applications through our Application Engineering Team. ext: 7611 | email: appeng@alliedmachine.com

	Feed Rate (mm/rev) by Diameter													
15 series 15.00 mm - 15.99 mm	16 series 16.00 mm - 16.99 mm	17 series 17.00 mm - 17.99 mm	18 series 18.00 mm - 19.99 mm	20 series 20.00 mm - 21.99 mm	22 series 22.00 mm - 23.99 mm	24 series 24.00 mm - 25.99 mm	26 series 26.00 mm - 28.99 mm	29 series 29.00 mm - 31.99 mm	32 series 32.00 mm - 35.00 mm					
0.16	0.19	0.21	0.23	0.23	0.23	0.26	0.26	0.28	0.28					
0.14	0.16	0.19	0.21	0.23	0.23	0.23	0.23	0.26	0.26					
0.14	0.14	0.16	0.19	0.21	0.21	0.23	0.23	0.23	0.23					
0.16	0.19	0.19	0.21	0.23	0.23	0.23	0.23	0.26	0.26					
0.14	0.16	0.19	0.19	0.21	0.21	0.23	0.23	0.23	0.23					
0.35	0.37	0.42	0.47	0.47	0.51	0.51	0.56	0.58	0.61					
0.33	0.35	0.40	0.44	0.47	0.47	0.51	0.51	0.56	0.56					
0.30	0.33	0.37	0.41	0.44	0.47	0.47	0.51	0.51	0.54					
0.28	0.30	0.35	0.38	0.41	0.44	0.47	0.47	0.51	0.51					
0.26	0.28	0.33	0.35	0.38	0.41	0.44	0.47	0.47	0.49					
0.37	0.40	0.46	0.49	0.51	0.54	0.56	0.58	0.61	0.63					
0.35	0.37	0.42	0.47	0.49	0.51	0.54	0.56	0.58	0.61					
0.33	0.35	0.40	0.47	0.47	0.49	0.51	0.54	0.56	0.58					
0.30	0.33	0.37	0.42	0.44	0.47	0.49	0.51	0.54	0.56					
0.30	0.33	0.35	0.40	0.41	0.44	0.47	0.49	0.51	0.54					
0.37	0.40	0.42	0.44	0.47	0.49	0.51	0.54	0.56	0.58					
0.35	0.37	0.40	0.41	0.44	0.47	0.49	0.51	0.54	0.54					
0.42	0.44	0.47	0.51	0.54	0.56	0.61	0.63	0.68	0.70					
0.40	0.41	0.44	0.49	0.51	0.54	0.58	0.61	0.65	0.68					
0.30	0.33	0.35	0.35	0.37	0.40	0.42	0.44	0.44	0.44					
0.28	0.28	0.30	0.33	0.35	0.37	0.40	0.41	0.41	0.41					
0.35	0.37	0.40	0.44	0.47	0.51	0.54	0.56	0.61	0.61					
0.12	0.14	0.14	0.16	0.19	0.19	0.19	0.23	0.23	0.26					

	3xD	, 5xD	7)	٢D	10xD, 12xD			
Series	Pressure BAR	Flow Rate LPM	Pressure BAR	Flow Rate LPM	Pressure BAR	Flow Rate LPM		
11	31	19	41	30	55	38		
12	31	19	41	30	55	38		
13	28	23	34	36	52	45		
14	28	26	34	36	52	45		
15	26	26	33	42	48	53		
16	26	30	33	45	48	57		
17	24	30	31	47	45	62		
18	24	34	31	47	45	62		
20	21	38	28	49	41	68		
22	21	42	28	53	41	68		
24	21	42	28	53	41	68		
26	21	45	28	61	41	76		
29	21	45	28	61	41	76		
32	21	45	28	61	41	76		

Deep Hole Drilling Guidelines

GEN3SYS XT Pro | 10xD and 12xD Holders

A WARNING Tool failure can cause serious injury. To prevent:

- When using holders without support bushing, use a short GEN3SYS holder to establish an initial hole that is a minimum of 2 diameters deep.

- Do not rotate tool holders more than 50 RPM unless it is engaged with the workpiece or fixture.

Visit www.alliedmachine.com/DeepHoleGuidelines for the most up-to-date information and procedures. Factory technical assistance is available for your specific applications through our Application Engineering Team. ext: 7611 | email: appeng@alliedmachine.com

Troubleshooting Guide

								Pot	enti	ial P	rob	lem									
	Accelerated corner wear	Barber pole	Bell-mouth hole	Insert chipping	Blue chips	Built-up Edge (BUE)	Chatter	Chip packing	Chipping of point	Damaged or broken tools	Excessive margin wear	High flank wear	Hole lead off	Hole out of position	Hole out of round	Oversize hole	Poor hole finish	Poor tool life	Power spikes - Load meter		
Setup Condition	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19		Possible Solutions
Worn or misaligned spindle (lathe, screw machine, chucker)	1	2	3				7			10			13				17				Align spindle and turret or tailstock. Repair spindle.
Use of low rigidity machine tools		2	3	4			7		9	10			13	14							Reduce penetration rate to fall within the physical limits of the machine or setup (NOTICE : Do not reduce feed below threshold of good chip formation).
Poor work piece support		2		4			7			10	11				15		17			•	Provide additional support for the work piece. Reduce penetration rate to fall within the physical limits of the machine or setup (NOTICE: Do not reduce feed below threshold of good chip formation).
Flood coolant, low coolant pressure, or low coolant volume	1				5	6		8		10		12				16	17	18	19	•	Run coolant through tool holder when drilling greater than 1xD. Increase coolant pressure and volume through the tool holder. Reduce penetration rate to fall within the coolant limitations (NOTICE: Do not reduce feed below threshold of good chip formation). Add a peck cycle to help clear chips.
Interrupted cuts. Entry or exit surfaces that are not perpendicular to the spindle (draft angles, parting lines, curved or stepped surfaces, cross holes, and cast or forged surfaces)				4			7		9	10	11		13	14	15	16	17	18		•	Premill (spot face) entry or exit surface to remove interruption. Decrease feed as much as 50% through entry or exit interruption. Use short holders in low impact entry cuts.
Material harder than expected or running tools beyond recommended speed	1				5	6				10		12						18		•	Reduce speed. Increase coolant pressure and volume. Improve coolant condition by use of quality products and regular maintenance.
Poor material micro-structure or foreign particles (forgings and castings that have not been normalized or annealed, poorly prepared steel, flame cut parts, and sand casting)				4		6				10		12	13					18		•	Compare performance of other tools for similar wear problems, which may indicate poor micro- structure. Anneal or normalize parts to improve micro-structure for machining. Reduce feeds (NOTICE: Do not reduce feed below threshold of good chip formation).
Poor chip control								8		10	11		13			16	17	18	19	•	Increase feed to recommended levels. Contact Allied's Application Engineering group for technical recommendations. Increase coolant pressure and volume. Improve coolant condition by use of quality products and regular maintenance.
Spot drilled holes with included angle less than that matching GEN3SYS XT or cored holes	1			4			7						13					18		•	Spot hole with short tool of same or greater included angle as GEN3SYS XT drill insert. Reduce feed (NOTICE: Do not reduce feed below threshold of good chip formation). If possible, drill from solid.

sестіо м **А25**

T-A Pro[®] Drilling System

Imperial		
Carbide		29 - 30
High-Speed Steel		31 - 32
Metric		
Carbide		33 - 34
High-Speed Steel		35 - 36
Deep Hole Drilling G	uidelines	37
Troubleshooting Gui	de	38

Carbide Recommended Drilling Data | Imperial (inch)

		Feed Rate (IPR) by Diameter										
		Hardness	Insert	Speed	Y / Z Series	0 Series	1 Series	2 Series	3 Series			
ISO	Material	(BHN)	Grade	(SFM)	(0.3739" - 0.4998")	(0.4999" - 0.6946")	(0.6947" - 0.9596")	(0.9597" - 1.3797")	(1.3798" - 1.8820")			
	Free-Machining Steel	100 - 150	Р	475	0.007	0.010	0.013	0.016	0.020			
	1118, 1215, 12L14, etc.	150 - 200	Р	440	0.007	0.010	0.013	0.016	0.020			
		200 - 250	Р	410	0.006	0.010	0.013	0.016	0.020			
	Low-Carbon Steel	85 - 125	Р	425	0.006*	0.009	0.012	0.015	0.019			
	1010, 1020, 1025,	125 - 175	Р	410	0.006*	0.009	0.012	0.015	0.019			
	1522, 1144, etc.	175 - 225	Р	385	0.005�	0.008	0.010	0.014	0.018			
		225 - 275	Р	355	0.005�	0.008	0.010	0.014	0.018			
	Medium-Carbon Steel	125 - 175	Р	410	0.006	0.009	0.012	0.015	0.019			
	1030, 1040, 1050, 1527,	175 - 225	Р	385	0.005	0.008	0.010	0.014	0.018			
	1140, 1151, etc.	225 - 275	Р	355	0.005	0.008	0.010	0.014	0.018			
		275 - 325	Р	330	0.004	0.007	0.009	0.012	0.016			
D	Alloy Steel	125 - 175	Р	420	0.006	0.009	0.012	0.014	0.017			
r	4140, 5140, 8640, etc.	175 - 225	Р	390	0.005	0.008	0.011	0.014	0.017			
		225 - 275	Р	360	0.005	0.008	0.011	0.014	0.017			
		275 - 325	Р	340	0.004	0.007	0.010	0.012	0.015			
		325 - 375	Р	310	0.003	0.007	0.010	0.012	0.015			
	High-Strength Alloy	225 - 300	Р	350	0.004	0.007	0.010	0.013	0.015			
	4340, 4330V, 300M, etc.	300 - 350	Р	325	0.003	0.006	0.009	0.012	0.014			
		350 - 400	Р	300	0.003	0.006	0.008	0.011	0.013			
	Structural Steel	100 - 150	Р	400	0.006*	0.010	0.012	0.014	0.018			
	A36, A285, A516, etc.	150 - 250	Р	340	0.005*	0.009	0.010	0.012	0.016			
		250 - 350	Р	280	0.004*	0.008	0.009	0.010	0.014			
	Tool Steel	150 - 200	Р	220	0.004	0.006	0.008	0.010	0.012			
	H-13, H-21, A-4, S-3, etc.	200 - 250	Р	180	0.004	0.006	0.008	0.010	0.012			
	High-Temp Alloy	140 - 220	М	110	0.002*	0.005	0.007	0.008	0.009			
	Hastelloy B, Inconel 600, etc.	220 - 310	М	85	0.002*	0.003	0.005	0.006	0.007			
	Titanium Alloy	140 - 220	М	150	0.003�	0.004	0.007	0.008	0.009			
S		220 - 310	М	120	0.003�	0.003	0.005	0.006	0.007			
	Aerospace Alloy	185 - 275	м	150	0.003�	0.004	0.007	0.008	0.009			
	S82	275 - 350	М	120	0.003�	0.003	0.005	0.006	0.007			
						1	1					

* Contact our Application Engineering department for assistance when machining these materials.

7xD and 10xD Adjustment Example (0.80 Adjustment)

12xD and 15xD Adjustment Example (0.70 Adjustment)

Data • Adjustment Value	Speed/Feed (7xD)	Speed • Adjustment Value	Speed/Feed (12xD)
200 SFM • 0.80	= 160 SFM	200 SFM • 0.70	= 140 SFM
0.008 IPR • 0.80	= 0.0064 IPR	0.008 IPR • 0.70	= 0.0056 IPR

Coolant Recommendations

	Stub, 3	xD, 5xD	7xD,	10xD	12xD, 15xD		
Series	ries PSI GP		Pressure PSI	Flow Rate GPM	Pressure PSI	Flow Rate GPM	
Y	450	4	550	6	650	8	
Z	450	4	550	6	650	8	
0	350	6	450	9	550	12	
1	300	8	400	10	500	12	
2	250	10	350	13	450	16	
3	200	12	300	14	400	18	

A WARNING Tool failure can cause serious injury. To prevent:

- When using holders without support bushing, use a short T-A Pro holder to establish an initial hole that is a minimum of 2 diameters deep.

- Do not rotate tool holders more than 50 RPM unless it is engaged with the workpiece or fixture.

Visit www.alliedmachine.com/DeepHoleGuidelines for the most up-to-date information and procedures.

Factory technical assistance is available for your specific applications through our Application Engineering department. ext: 7611 | email: appeng@alliedmachine.com

Carbide Recommended Drilling Data | Imperial (inch)

						Feed	Rate (IPR) by Diam	eter	
ISO	Material	Hardness (BHN)	Insert Grade	Speed (SFM)	Y / Z Series (0.3739" - 0.4998")	0 Series (0.4999" - 0.6946")	1 Series (0.6947" - 0.9596")	2 Series (0.9597" - 1.3797")	3 Series (1.3798" - 1.8820")
	Stainless Steel 400 Series	185 - 275	М	280	0.005*	0.009	0.010	0.012	0.013
	416, 420, etc.	275 - 350	М	230	0.004*	0.008	0.009	0.011	0.012
	Stainless Steel 300 Series	135 - 185	М	280	0.003�	0.004	0.005	0.008	0.011
	304, 316, 17-4PH, etc.	185 - 275	М	250	0.002*	0.003	0.004	0.007	0.009
м	Stainless Steel 300L Series	135 - 185	М	325	0.003�	0.004	0.005	0.008	0.011
IVI	304L, 316L, etc.	185 - 275	М	280	0.002*	0.003	0.004	0.007	0.009
	PH Stainless	275 - 350	М	280	0.003�	0.004	0.005	0.008	0.011
	17-4, 13-8, 15-5	350 - 425	М	250	0.002*	0.003	0.004	0.007	0.009
	Super Duplex Stainless Steel	135 - 185	М	250	0.003�	0.004	0.005	0.008	0.011
		185 - 275	М	230	0.002*	0.003	0.004	0.007	0.009
	Wear Plate	400	Р	70	0.003	0.006	0.008	0.009	0.012
	Hardox [®] , AR400, T-1, etc.	500	Р	45	0.002	0.005	0.007	0.008	0.010
Н		600	-	-	-	-	-	-	-
	Hardened Steel	300 - 400	Р	95	0.003	0.006	0.008	0.009	0.012
		400 - 500	Р	45	0.002	0.005	0.007	0.008	0.010
	SG / Nodular Cast Iron	120 - 150	K	600	0.007	0.012	0.016	0.020	0.024
		150 - 200	К	550	0.006	0.011	0.014	0.018	0.022
К		200 - 220	К	500	0.006	0.009	0.012	0.016	0.018
		220 - 260	К	450	0.005	0.007	0.009	0.012	0.014
		260 - 320	K	400	0.004	0.006	0.007	0.009	0.012
	Cast Aluminum	30	N	1100	0.008	0.013	0.016	0.020	0.022
		180	N	600	0.008	0.013	0.016	0.018	0.022
	Wrought Aluminum	30	N	1100	0.009	0.013	0.017	0.020	0.024
		180	N	600	0.005	0.007	0.010	0.013	0.016
N	Aluminum Bronze	100 - 200	N	500	0.006	0.011	0.014	0.018	0.022
		200 - 250	N	300	0.005	0.007	0.009	0.012	0.014
	Brass	100	N	650	0.007	0.012	0.016	0.020	0.024
	Copper	60	N	430	0.002	0.003	0.006	0.008	0.010

* Contact our Application Engineering department for assistance when machining these materials.

7xD and 10xD Adjustment Example (0.80 Adjustment)

12xD and 15xD Adjustment Example (0.70 Adjustment)

Data • Adjustment Value	Speed/Feed (7xD)	Speed • Adjustment Value	Speed/Feed (12xD)
200 SFM • 0.80	= 160 SFM	200 SFM • 0.70	= 140 SFM
0.008 IPR • 0.80	= 0.0064 IPR	0.008 IPR • 0.70	= 0.0056 IPR

Coolant Recommendations

	Stub, 3	xD, 5xD	7xD,	10xD	12xD, 15xD		
Series	Pressure Series PSI		Pressure PSI	Flow Rate GPM	Pressure PSI	Flow Rate GPM	
Y	450	4	550	6	650	8	
Z	450	4	550	6	650	8	
0	350	6	450	9	550	12	
1	300	8	400	10	500	12	
2	250	10	350	13	450	16	
3	200	12	300	14	400	18	

WARNING Tool failure can cause serious injury. To prevent:

- When using holders without support bushing, use a short T-A Pro holder to establish an initial hole that is a minimum of 2 diameters deep.

- Do not rotate tool holders more than 50 RPM unless it is engaged with the workpiece or fixture.

Visit www.alliedmachine.com/DeepHoleGuidelines for the most up-to-date information and procedures.

Factory technical assistance is available for your specific applications through our Application Engineering department. ext: 7611 | email: appeng@alliedmachine.com

High-Speed Steel Recommended Drilling Data | Imperial (inch)

						Feed	Rate (IPR) by Diam	neter	
		Hardness	Insert	Speed	Y / Z Series	0 Series	1 Series	2 Series	3 Series
ISO	Material	(BHN)	Grade	(SFM)	(0.3739" - 0.4998")	(0.4999" - 0.6946")	(0.6947" - 0.9596")	(0.9597" - 1.3797")	(1.3798" - 1.8820")
	Free-Machining Steel	100 - 150	Х	350	0.006	0.010	0.013	0.016	0.020
	1118, 1215, 12L14, etc.	150 - 200	Х	325	0.006	0.010	0.013	0.016	0.020
		200 - 250	Х	300	0.005	0.010	0.013	0.016	0.020
	Low-Carbon Steel	85 - 125	Х	315	0.006*	0.009	0.012	0.015	0.019
	1010, 1020, 1025,	125 - 175	Х	300	0.005�	0.009	0.012	0.015	0.019
	1522, 1144, etc.	175 - 225	Х	285	0.005�	0.008	0.010	0.014	0.018
		225 - 275	Х	265	0.005�	0.008	0.010	0.014	0.018
	Medium-Carbon Steel	125 - 175	Х	300	0.006	0.009	0.012	0.015	0.019
	1030, 1040, 1050, 1527,	175 - 225	Х	285	0.005	0.008	0.010	0.014	0.018
	1140, 1151, etc.	225 - 275	X	265	0.005	0.008	0.010	0.014	0.018
		275 - 325	Х	235	0.004	0.007	0.009	0.012	0.016
Р	Alloy Steel	125 - 175	X	250	0.006	0.009	0.012	0.014	0.017
P	4140, 5140, 8640, etc.	175 - 225	Х	235	0.005	0.008	0.011	0.014	0.017
		225 - 275	Х	220	0.005	0.008	0.011	0.014	0.017
		275 - 325	X	205	0.004	0.007	0.010	0.012	0.015
		325 - 375	Х	190	0.003	0.007	0.010	0.012	0.015
	High-Strength Alloy	225 - 300	Х	135	0.004	0.007	0.010	0.013	0.015
	4340, 4330V, 300M, etc.	300 - 350	Х	110	0.003	0.006	0.009	0.012	0.014
		350 - 400	Х	90	0.003	0.006	0.008	0.011	0.013
	Structural Steel	100 - 150	Х	250	0.006*	0.010	0.012	0.014	0.018
	A36, A285, A516, etc.	150 - 250	Х	210	0.005�	0.009	0.010	0.012	0.016
		250 - 350	Х	175	0.004*	0.008	0.009	0.010	0.014
	Tool Steel	150 - 200	Х	145	0.004	0.006	0.008	0.010	0.012
	H-13, H-21, A-4, S-3, etc.	200 - 250	Х	120	0.004	0.006	0.008	0.010	0.012
	High-Temp Alloy	140 - 220	Х	45	0.003*	0.007	0.008	0.010	0.012
	Hastelloy B, Inconel 600, etc.	220 - 310	X	40	0.003	0.006	0.007	0.008	0.010
	Titanium Alloy	140 - 220	X	60	0.003	0.007	0.008	0.010	0.012
S		220 - 310	x	50	0.003	0.006	0.007	0.008	0.010
	Aerospace Alloy	185 - 275	X	125	0.005	0.008	0.009	0.010	0.014
	S82	275 - 350	X	110	0.004	0.007	0.008	0.008	0.012

Contact our Application Engineering department for assistance when machining these materials.

7xD and 10xD Adjustment Example (0.80 Adjustment)

12xD and 15xD Adjustment Example (0.70 Adjustment)

Data • Adjustment Value	Speed/Feed (7xD)	Speed • Adjustment Value	Speed/Feed (12xD)
200 SFM • 0.80	= 160 SFM	200 SFM • 0.70	= 140 SFM
0.008 IPR • 0.80	= 0.0064 IPR	0.008 IPR • 0.70	= 0.0056 IPR

Coolant Recommendations

	Stub, 3	xD, 5xD	7xD,	10xD	12xD, 15xD		
Series	ries PSI GP		Pressure PSI	Flow Rate GPM	Pressure PSI	Flow Rate GPM	
Y	450	4	550	6	650	8	
Z	450	4	550	6	650	8	
0	350	6	450	9	550	12	
1	300	8	400	10	500	12	
2	250	10	350	13	450	16	
3	200	12	300	14	400	18	

A WARNING Tool failure can cause serious injury. To prevent:

- When using holders without support bushing, use a short T-A Pro holder to establish an initial hole that is a minimum of 2 diameters deep.

- Do not rotate tool holders more than 50 RPM unless it is engaged with the workpiece or fixture.

Visit www.alliedmachine.com/DeepHoleGuidelines for the most up-to-date information and procedures.

Factory technical assistance is available for your specific applications through our Application Engineering department. ext: 7611 | email: appeng@alliedmachine.com

High-Speed Steel Recommended Drilling Data | Imperial (inch)

						Feed	Rate (IPR) by Diam	eter	
ISO	Material	Hardness (BHN)	Insert Grade	Speed (SFM)	Y / Z Series (0.3739" - 0.4998")	0 Series (0.4999" - 0.6946")	1 Series (0.6947" - 0.9596")	2 Series (0.9597" - 1.3797")	3 Series (1.3798" - 1.8820")
	Stainless Steel 400 Series	185 - 275	Х	125	0.005�	0.010	0.011	0.012	0.013
	416, 420, etc.	275 - 350	Х	110	0.004�	0.009	0.010	0.011	0.012
	Stainless Steel 300 Series	135 - 185	Х	125	0.005�	0.007	0.008	0.009	0.012
м	304, 316, 17-4PH, etc.	185 - 275	Х	110	0.004�	0.006	0.007	0.008	0.011
	PH Stainless	275 - 350	Х	95	0.003�	0.004	0.006	0.008	0.010
	17-4, 13-8, 15-5	350 - 425	Х	75	0.003�	0.004	0.006	0.008	0.010
	Super Duplex Stainless Steel	135 - 185	Х	125	0.005�	0.005	0.006	0.006	0.007
		185 - 275	Х	110	0.004*	0.005	0.005	0.006	0.006
	Wear Plate	400	Х	60	0.003	0.006	0.008	0.009	0.012
	Hardox [®] , AR400, T-1, etc.	500	Х	45	0.002	0.005	0.007	0.008	0.010
Н		600	-	-	-	-	_	-	_
	Hardened Steel	300 - 400	Х	75	0.003	0.006	0.008	0.009	0.012
		400 - 500	Х	45	0.002	0.005	0.007	0.008	0.010
	SG / Nodular Cast Iron	120 - 150	Х	300	0.007	0.012	0.016	0.020	0.024
		150 - 200	Х	275	0.006	0.011	0.014	0.018	0.022
К		200 - 220	Х	240	0.006	0.009	0.012	0.016	0.018
		220 - 260	Х	215	0.005	0.007	0.009	0.012	0.014
		260 - 320	Х	175	0.004	0.006	0.007	0.009	0.012
	Cast Aluminum	30	Х	600	0.008	0.013	0.016	0.020	0.022
		180	Х	300	0.008	0.013	0.016	0.018	0.022
	Wrought Aluminum	30	Х	900	0.009	0.013	0.017	0.020	0.024
		180	Х	600	0.005	0.007	0.010	0.013	0.016
N	Aluminum Bronze	100 - 200	Х	300	0.006	0.011	0.014	0.018	0.022
		200 - 250	Х	250	0.005	0.007	0.009	0.012	0.014
	Brass	100	Х	485	0.007	0.012	0.016	0.020	0.024
	Copper	60	Х	320	0.002	0.003	0.006	0.008	0.010

* Contact our Application Engineering department for assistance when machining these materials.

7xD and 10xD Adjustment Example (0.80 Adjustment)

12xD and 15xD Adjustment Example (0.70 Adjustment)

Data • Adjustment Value	Speed/Feed (7xD)	Speed • Adjustment Value	Speed/Feed (12xD)
200 SFM • 0.80	= 160 SFM	200 SFM • 0.70	= 140 SFM
0.008 IPR • 0.80	= 0.0064 IPR	0.008 IPR • 0.70	= 0.0056 IPR

Coolant Recommendations

	Stub, 3	xD, 5xD	7xD,	10xD	12xD, 15xD		
Series	Pressure Series PSI		Pressure PSI	Flow Rate GPM	Pressure PSI	Flow Rate GPM	
Y	450	4	550	6	650	8	
Z	450	4	550	6	650	8	
0	350	6	450	9	550	12	
1	300	8	400	10	500	12	
2	250	10	350	13	450	16	
3	200	12	300	14	400	18	

WARNING Tool failure can cause serious injury. To prevent:

- When using holders without support bushing, use a short T-A Pro holder to establish an initial hole that is a minimum of 2 diameters deep.

- Do not rotate tool holders more than 50 RPM unless it is engaged with the workpiece or fixture.

Visit www.alliedmachine.com/DeepHoleGuidelines for the most up-to-date information and procedures.

Factory technical assistance is available for your specific applications through our Application Engineering department. ext: 7611 | email: appeng@alliedmachine.com

Carbide Recommended Drilling Data | Metric (mm)

				Speed		Feed R	ate (mm/rev) by Di	ameter	
		Hardness	Insert	(m/	Y / Z Series	0 Series	1 Series	2 Series	3 Series
ISO	Material	(BHN)	Grade	min)	(9.50 - 12.69)	(12.70 - 17.64)	(17.65 - 24.37)	(24.38 - 35.04)	(35.05 - 47.80)
	Free-Machining Steel	100 - 150	Р	145	0.18	0.25	0.33	0.41	0.51
	1118, 1215, 12L14, etc.	150 - 200	Р	135	0.18	0.25	0.33	0.41	0.51
		200 - 250	Р	125	0.15	0.25	0.33	0.41	0.51
	Low-Carbon Steel	85 - 125	Р	130	0.15*	0.23	0.30	0.38	0.48
	1010, 1020, 1025,	125 - 175	Р	125	0.15*	0.23	0.30	0.38	0.48
	1522, 1144, etc.	175 - 225	Р	115	0.13*	0.20	0.25	0.36	0.46
		225 - 275	Р	110	0.13*	0.20	0.25	0.36	0.46
	Medium-Carbon Steel	125 - 175	Р	125	0.15	0.23	0.30	0.38	0.48
	1030, 1040, 1050, 1527,	175 - 225	Р	115	0.13	0.20	0.25	0.36	0.46
	1140, 1151, etc.	225 - 275	Р	110	0.13	0.20	0.25	0.36	0.46
		275 - 325	Р	100	0.10	0.18	0.23	0.30	0.41
P	Alloy Steel	125 - 175	Р	130	0.15	0.23	0.30	0.36	0.43
P	4140, 5140, 8640, etc.	175 - 225	Р	120	0.13	0.20	0.28	0.36	0.43
		225 - 275	Р	110	0.13	0.20	0.28	0.36	0.43
		275 - 325	Р	105	0.10	0.18	0.25	0.30	0.38
		325 - 375	Р	95	0.08	0.18	0.25	0.30	0.38
	High-Strength Alloy	225 - 300	Р	105	0.10	0.18	0.25	0.33	0.38
	4340, 4330V, 300M, etc.	300 - 350	Р	100	0.08	0.15	0.23	0.30	0.36
		350 - 400	Р	90	0.08	0.15	0.20	0.28	0.33
	Structural Steel	100 - 150	Р	120	0.15*	0.25	0.30	0.36	0.46
	A36, A285, A516, etc.	150 - 250	Р	105	0.13*	0.23	0.25	0.30	0.41
		250 - 350	Р	85	0.10*	0.20	0.23	0.25	0.36
	Tool Steel	150 - 200	Р	65	0.10	0.15	0.20	0.25	0.30
	H-13, H-21, A-4, S-3, etc.	200 - 250	Р	55	0.10	0.15	0.20	0.25	0.30
	High-Temp Alloy	140 - 220	М	35	0.05*	0.13	0.18	0.20	0.23
	Hastelloy B, Inconel 600, etc.	220 - 310	M	25	0.05*	0.08	0.13	0.15	0.18
	Titanium Alloy	140 - 220	M	45	0.08*	0.10	0.18	0.20	0.23
S		220 - 310	M	35	0.08*	0.08	0.13	0.15	0.18
	Aerospace Alloy	185 - 275	M	45	0.08*	0.10	0.18	0.20	0.23
	S82	275 - 350	M	35	0.08*	0.08	0.13	0.15	0.18

Contact our Application Engineering department for assistance when machining these materials.

7xD and 10xD Adjustment Example (0.80 Adjustment)

12xD and 15xD Adjustment Example (0.70 Adjustment)

Data • Adjustment Value	Speed/Feed (7xD)	Speed • Adjustment Value	Speed/Feed (12xD)
100 m/min • 0.80	= 80 m/min	100 m/min • 0.70	= 70 m/min
0.2 mm/rev • 0.80	= 0.16 mm/rev	0.2 mm/rev • 0.70	= 0.14 mm/rev

Coolant Recommendations

	Stub, 3xD, 5xD		7xD, 10xD		12xD, 15xD	
Series	Pressure BAR	Flow Rate LPM	Pressure BAR	Flow Rate LPM	Pressure BAR	Flow Rate LPM
Y	31	15	34	55	45	30
Z	31	15	34	22	45	30
0	24	22	31	34	34	45
1	21	30	27	38	34	45
2	17	38	24	49	31	60
3	14	45	21	53	27	68

A WARNING Tool failure can cause serious injury. To prevent:

- When using holders without support bushing, use a short T-A Pro holder to establish an initial hole that is a minimum of 2 diameters deep.

- Do not rotate tool holders more than 50 RPM unless it is engaged with the workpiece or fixture.

Visit www.alliedmachine.com/DeepHoleGuidelines for the most up-to-date information and procedures.

Factory technical assistance is available for your specific applications through our Application Engineering department. ext: 7611 | email: appeng@alliedmachine.com

Carbide Recommended Drilling Data | Metric (mm)

				Speed		Feed R	ate (mm/rev) by Di	ameter	
ISO	Material	Hardness (BHN)	Insert Grade	(m/ min)	Y / Z Series (9.50 - 12.69)	0 Series (12.70 - 17.64)	1 Series (17.65 - 24.37)	2 Series (24.38 - 35.04)	3 Series (35.05 - 47.80)
	Stainless Steel 400 Series	185 - 275	М	85	0.13*	0.23	0.25	0.30	0.33
	416, 420, etc.	275 - 350	М	70	0.10*	0.20	0.23	0.28	0.30
	Stainless Steel 300 Series	135 - 185	М	85	0.08*	0.10	0.13	0.20	0.28
	304, 316, 17-4PH, etc.	185 - 275	М	75	0.05*	0.08	0.10	0.18	0.23
м	Stainless Steel 300L Series	135 - 185	М	100	0.08*	0.10	0.13	0.20	0.28
IVI	304L, 316L, etc.	185 - 275	М	85	0.05*	0.08	0.10	0.18	0.23
	PH Stainless	275 - 350	М	85	0.08*	0.10	0.13	0.20	0.28
	17-4, 13-8, 15-5	350 - 425	М	75	0.05*	0.08	0.10	0.18	0.23
	Super Duplex Stainless Steel	135 - 185	М	75	0.08*	0.10	0.13	0.20	0.28
		185 - 275	М	70	0.05*	0.08	0.10	0.18	0.23
	Wear Plate	400	Р	20	0.08	0.15	0.20	0.23	0.30
	Hardox [®] , AR400, T-1, etc.	500	Р	15	0.05	0.13	0.18	0.20	0.25
н	, , ,	600	-	_	_	-	_	_	-
	Hardened Steel	300 - 400	Р	30	0.08	0.15	0.20	0.23	0.30
		400 - 500	Р	15	0.05	0.13	0.18	0.20	0.25
	SG / Nodular Cast Iron	120 - 150	К	185	0.18	0.30	0.41	0.51	0.61
		150 - 200	ĸ	170	0.15	0.28	0.36	0.46	0.56
к		200 - 220	К	150	0.15	0.23	0.30	0.41	0.46
		220 - 260	К	135	0.13	0.18	0.23	0.30	0.36
		260 - 320	K	120	0.10	0.15	0.18	0.23	0.30
		20		005	0.00	0.00	0.44	0.54	0.50
	Cast Aluminum	30	N	335	0.20	0.33	0.41	0.51	0.56
		180	N	185	0.20	0.33	0.41	0.46	0.56
	Wrought Aluminum	30	N	335	0.23	0.33	0.43	0.51	0.61
Ν	Aluminum Bronze	180	N	185	0.13	0.18	0.25	0.33	0.41
	Aluminum Bronze	100 - 200 200 - 250	N	150 90	0.15	0.28	0.36	0.46	0.56
	Brees		N N	200	0.13		0.23		0.36
	Brass	100 60	N	130	0.18	0.30	0.41	0.51 0.20	0.61
	Copper	00		130	0.05	0.08	0.15	0.20	0.25

Contact our Application Engineering department for assistance when machining these materials.

7xD and 10xD Adjustment Example (0.80 Adjustment)

12xD and 15xD Adjustment Example (0.70 Adjustment)

Data • Adjustment Value	Speed/Feed (7xD)	Speed • Adjustment Value	Speed/Feed (12xD)
100 m/min • 0.80	= 80 m/min	100 m/min • 0.70	= 70 m/min
0.2 mm/rev • 0.80	= 0.16 mm/rev	0.2 mm/rev • 0.70	= 0.14 mm/rev

Coolant Recommendations

	Stub, 3	xD, 5xD	7xD,	10xD	12xD, 15xD			
Series	Pressure BAR	Flow Rate LPM	Pressure BAR	Flow Rate LPM	Pressure BAR	Flow Rate LPM		
Y	31	15	34	55	45	30		
Z	31	15	34	22	45	30		
0	24	22	31	34	34	45		
1	21	30	27	38	34	45		
2	17 38		24	49	31	60		
3	14	45	21	53	27 68			

WARNING Tool failure can cause serious injury. To prevent:

- When using holders without support bushing, use a short T-A Pro holder to establish an initial hole that is a minimum of 2 diameters deep.

- Do not rotate tool holders more than 50 RPM unless it is engaged with the workpiece or fixture.

Visit www.alliedmachine.com/DeepHoleGuidelines for the most up-to-date information and procedures.

Factory technical assistance is available for your specific applications through our Application Engineering department. ext: 7611 | email: appeng@alliedmachine.com

IMPORTANT: The speeds and feeds listed above are a general starting point for all applications. Refer to the coolant recommendation chart for coolant requirements to run at the recommended speeds and feeds. Factory technical assistance is available through our Application Engineering department. For 7xD, 10xD, 12xD, and 15xD holder lengths, see adjustment example above.

High-Speed Steel Recommended Drilling Data | Metric (mm)

				Speed		Feed R	ate (mm/rev) by Di	ameter	
		Hardness	Insert	(m/	Y / Z Series	0 Series	1 Series	2 Series	3 Series
ISO	Material	(BHN)	Grade	min)	(9.50 - 12.69)	(12.70 - 17.64)	(17.65 - 24.37)	(24.38 - 35.04)	(35.05 - 47.80)
	Free-Machining Steel	100 - 150	Х	105	0.15	0.25	0.33	0.41	0.51
	1118, 1215, 12L14, etc.	150 - 200	Х	100	0.15	0.25	0.33	0.41	0.51
		200 - 250	Х	90	0.13	0.25	0.33	0.41	0.51
	Low-Carbon Steel	85 - 125	Х	95	0.15*	0.23	0.30	0.38	0.48
	1010, 1020, 1025,	125 - 175	Х	90	0.13*	0.23	0.30	0.38	0.48
	1522, 1144, etc.	175 - 225	Х	85	0.13*	0.20	0.25	0.36	0.46
		225 - 275	Х	80	0.13*	0.20	0.25	0.36	0.46
	Medium-Carbon Steel	125 - 175	Х	90	0.15	0.23	0.30	0.38	0.48
	1030, 1040, 1050, 1527,	175 - 225	Х	85	0.13	0.20	0.25	0.36	0.46
	1140, 1151, etc.	225 - 275	Х	80	0.13	0.20	0.25	0.36	0.46
		275 - 325	Х	70	0.10	0.18	0.23	0.30	0.41
P	Alloy Steel	125 - 175	Х	75	0.15	0.23	0.30	0.36	0.43
P	4140, 5140, 8640, etc.	175 - 225	Х	70	0.13	0.20	0.28	0.36	0.43
		225 - 275	Х	65	0.13	0.20	0.28	0.36	0.43
		275 - 325	Х	60	0.10	0.18	0.25	0.30	0.38
		325 - 375	Х	60	0.08	0.18	0.25	0.30	0.38
	High-Strength Alloy	225 - 300	Х	40	0.10	0.18	0.25	0.33	0.38
	4340, 4330V, 300M, etc.	300 - 350	Х	35	0.08	0.15	0.23	0.30	0.36
		350 - 400	Х	25	0.08	0.15	0.20	0.28	0.33
	Structural Steel	100 - 150	Х	75	0.15*	0.25	0.30	0.36	0.46
	A36, A285, A516, etc.	150 - 250	Х	65	0.13*	0.23	0.25	0.30	0.41
		250 - 350	Х	55	0.10*	0.20	0.23	0.25	0.36
	Tool Steel	150 - 200	Х	45	0.10	0.15	0.20	0.25	0.30
	H-13, H-21, A-4, S-3, etc.	200 - 250	Х	35	0.10	0.15	0.20	0.25	0.30
	High-Temp Alloy	140 - 220	Х	15	0.08*	0.18	0.20	0.25	0.30
	Hastelloy B, Inconel 600, etc.	220 - 310	X	10	0.08*	0.15	0.18	0.20	0.25
	Titanium Alloy	140 - 220	Х	20	0.08	0.18	0.20	0.25	0.30
S	,	220 - 310	Х	15	0.08	0.15	0.18	0.20	0.25
	Aerospace Alloy	185 - 275	Х	40	0.13	0.20	0.23	0.25	0.36
	582	275 - 350	Х	35	0.10	0.18	0.20	0.20	0.30

Contact our Application Engineering department for assistance when machining these materials.

7xD and 10xD Adjustment Example (0.80 Adjustment)

12xD and 15xD Adjustment Example (0.70 Adjustment)

Data • Adjustment Value	Speed/Feed (7xD)	Speed • Adjustment Value	Speed/Feed (12xD)
100 m/min • 0.80	= 80 m/min	100 m/min • 0.70	= 70 m/min
0.2 mm/rev • 0.80	= 0.16 mm/rev	0.2 mm/rev • 0.70	= 0.14 mm/rev

Coolant Recommendations

	Stub, 3	xD, 5xD	7xD,	10xD	12xD, 15xD			
Series	Pressure BAR	Flow Rate LPM	Pressure BAR	Flow Rate LPM	Pressure BAR	Flow Rate LPM		
Y	31	15	34	55	45 30			
Z	31	15	34	22	45 34	30		
0	24	22	31	34		45		
1	21	30	27	38	34	45		
2	17 38		24	49	31	60		
3	14	45	21	53	27	68		

A WARNING Tool failure can cause serious injury. To prevent:

- When using holders without support bushing, use a short T-A Pro holder to establish an initial hole that is a minimum of 2 diameters deep.

- Do not rotate tool holders more than 50 RPM unless it is engaged with the workpiece or fixture.

Visit www.alliedmachine.com/DeepHoleGuidelines for the most up-to-date information and procedures.

Factory technical assistance is available for your specific applications through our Application Engineering department. ext: 7611 | email: appeng@alliedmachine.com

IMPORTANT: The speeds and feeds listed above are a general starting point for all applications. Refer to the coolant recommendation chart for coolant requirements to run at the recommended speeds and feeds. Factory technical assistance is available through our Application Engineering department. For 7xD, 10xD, 12xD, and 15xD holder lengths, see adjustment example above.

High-Speed Steel Recommended Drilling Data | Metric (mm)

				Speed		Feed R	ate (mm/rev) by Di	ameter	
ISO	Material	Hardness (BHN)	Insert Grade	(m/ min)	Y / Z Series (9.50 - 12.69)	0 Series (12.70 - 17.64)	1 Series (17.65 - 24.37)	2 Series (24.38 - 35.04)	3 Series (35.05 - 47.80)
	Stainless Steel 400 Series	185 - 275	Х	40	0.13*	0.25	0.28	0.30	0.33
	416, 420, etc.	275 - 350	Х	35	0.10*	0.23	0.25	0.28	0.30
	Stainless Steel 300 Series	135 - 185	Х	40	0.13*	0.18	0.20	0.23	0.30
м	304, 316, 17-4PH, etc.	185 - 275	Х	35	0.10*	0.15	0.18	0.20	0.28
IVI	PH Stainless	275 - 350	Х	30	0.08*	0.10	0.15	0.20	0.25
	17-4, 13-8, 15-5	350 - 425	Х	25	0.08*	0.10	0.15	0.20	0.25
	Super Duplex Stainless Steel	135 - 185	Х	40	0.13*	0.13	0.15	0.15	0.18
		185 - 275	Х	35	0.10*	0.13	0.13	0.15	0.15
	Wear Plate	400	Х	20	0.08	0.15	0.20	0.23	0.30
	Hardox [®] , AR400, T-1, etc.	500	Х	15	0.05	0.13	0.18	0.20	0.25
Н		600	-	-	-	-	-	-	-
	Hardened Steel	300 - 400	Х	25	0.08	0.15	0.20	0.23	0.30
		400 - 500	Х	15	0.05	0.13	0.18	0.20	0.25
	SG / Nodular Cast Iron	120 - 150	Х	90	0.18	0.30	0.41	0.51	0.61
		150 - 200	Х	85	0.15	0.28	0.36	0.46	0.56
К		200 - 220	Х	75	0.15	0.23	0.30	0.41	0.46
		220 - 260	Х	65	0.13	0.18	0.23	0.30	0.36
		260 - 320	Х	55	0.10	0.15	0.18	0.23	0.30
	Cast Aluminum	30	Х	185	0.20	0.33	0.41	0.51	0.56
		180	Х	90	0.20	0.33	0.41	0.46	0.56
	Wrought Aluminum	30	х	275	0.23	0.33	0.43	0.51	0.61
		180	Х	185	0.13	0.18	0.25	0.33	0.41
Ν	Aluminum Bronze	100 - 200	х	90	0.15	0.28	0.36	0.46	0.56
		200 - 250	Х	75	0.13	0.18	0.23	0.30	0.36
	Brass	100	Х	150	0.18	0.30	0.41	0.51	0.61
	Copper	60	Х	100	0.05	0.08	0.15	0.20	0.25

* Contact our Application Engineering department for assistance when machining these materials.

7xD and 10xD Adjustment Example (0.80 Adjustment)

12xD and 15xD Adjustment Example (0.70 Adjustment)

Data • Adjustment Value	Speed/Feed (7xD)	Speed • Adjustment Value	Speed/Feed (12xD)
100 m/min • 0.80	= 80 m/min	100 m/min • 0.70	= 70 m/min
0.2 mm/rev • 0.80	= 0.16 mm/rev	0.2 mm/rev • 0.70	= 0.14 mm/rev

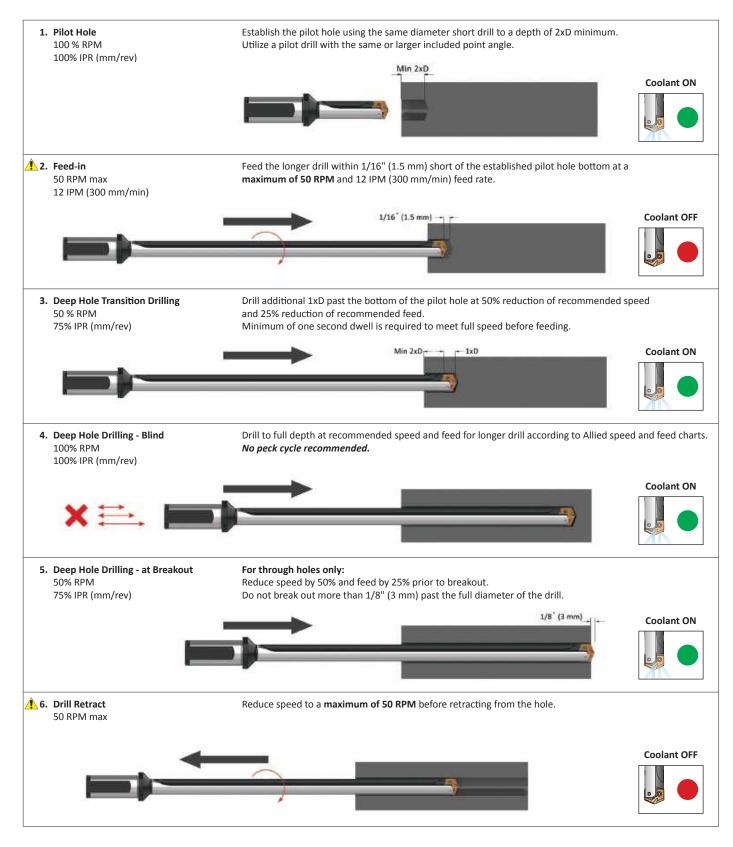
Coolant Recommendations

	Stub, 3	3xD, 5xD	7xD,	10xD	12xD, 15xD			
Series	Pressure BAR	Flow Rate LPM	Pressure BAR	Flow Rate LPM	Pressure BAR	Flow Rate LPM		
Y	31	15	34	55	45 30			
Z	31	15	34	22	45	30		
0	24	22	31	34	34	45		
1	21	30	27	38	34	45		
2	17 38		24	49	31	60		
3	14	45	21	53	27	68		

WARNING Tool failure can cause serious injury. To prevent:

- When using holders without support bushing, use a short T-A Pro holder to establish an initial hole that is a minimum of 2 diameters deep.

- Do not rotate tool holders more than 50 RPM unless it is engaged with the workpiece or fixture.


Visit www.alliedmachine.com/DeepHoleGuidelines for the most up-to-date information and procedures.

Factory technical assistance is available for your specific applications through our Application Engineering department. ext: 7611 | email: appeng@alliedmachine.com

IMPORTANT: The speeds and feeds listed above are a general starting point for all applications. Refer to the coolant recommendation chart for coolant requirements to run at the recommended speeds and feeds. Factory technical assistance is available through our Application Engineering department. For 7xD, 10xD, 12xD, and 15xD holder lengths, see adjustment example above.

Deep Hole Drilling Guidelines

T-A Pro | 10xD, 12xD, and 15xD Holders

A WARNING Tool failure can cause serious injury. To prevent:

- When using holders without support bushing, use a short T-A Pro holder to establish an initial hole that is a minimum of 2 diameters deep.

- Do not rotate tool holders more than 50 RPM unless it is engaged with the workpiece or fixture. Visit www.alliedmachine.com/DeepHoleGuidelines for the most up-to-date information and procedures.

Factory technical assistance is available for your specific applications through our Application Engineering department. ext: 7611 | email: appeng@alliedmachine.com

Troubleshooting Guide

								Pot	enti	ial P	rob	lem									
	Accelerated corner wear	Barber pole	Bell-mouth hole	Insert chipping	Blue chips	Built-Up Edge (BUE)	Chatter	Chip packing	Chipping of point	Damaged or broken tools	Excessive margin wear	High flank wear	Hole lead off	Hole out of position	Hole out of round	Oversize hole	Poor hole finish	Poor tool life	Power spikes - Load meter		
Setup Condition	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19		Possible Solutions
Worn or misaligned spindle (lathe, screw machine, chucker)	1	2	3				7		9	10	11		13			16	17			Align sRepair	pindle and turret or tailstock. spindle.
Use of low rigidity machine tools		2	3	4			7			10			13	14						physica	e penetration rate to fall within the al limits of the machine or setup (NOTICE: reduce feed below threshold of good chip ion).
Poor work piece support		2		4			7			10	11				15		17			 Reduce physica 	e additional support for the work piece. e penetration rate to fall within the al limits of the machine or setup (NOTICE: reduce feed below threshold of good chip ion).
Flood coolant, low coolant pressure, or low coolant volume	1				5	6		8		10		12				16	17	18	19	greaterIncrease the tooReduce limitation threshold	olant through tool holder when drilling r than 1xD. se coolant pressure and volume through ol holder. e penetration rate to fall within the coolant ons (NOTICE: Do not reduce feed below old of good chip formation). beck cycle to help clear chips.
Interrupted cuts. Entry or exit surfaces that are not perpendicular to the spindle (draft angles, parting lines, curved or stepped surfaces, cross holes, and cast or forged surfaces)				4			7		9	10	11		13	14	15	16	17	18		removeDecrea exit int	II (spot face) entry or exit surface to e interruption. se feed as much as 50% through entry or erruption. ort holders in low impact entry cuts.
Material harder than expected or running tools beyond recommended speed	1				5	6				10		12						18		Improv	e speed. se coolant pressure and volume. re coolant condition by use of quality ts and regular maintenance.
Poor material micro-structure or foreign particles (forgings and castings that have not been normalized or annealed, poorly prepared steel, flame cut parts, and sand casting)				4		6				10		12	13					18		wear p structu micro-s Reduce	re performance of other tools for similar roblems, which may indicate poor micro- ire. Anneal or normalize parts to improve structure for machining. e feeds (NOTICE: Do not reduce feed below old of good chip formation).
Poor chip control								8		10	11		13			16	17	18	19	Allied's technic Increas Improv	e feed to recommended levels. Contact Application Engineering group for cal recommendations. the coolant pressure and volume. the coolant condition by use of quality tts and regular maintenance.
Spot drilled holes with included angle less than that matching T-A Pro or cored holes	1			4			7						13					18		include Reduce thresho	ble with short tool of same or greater ed angle as T-A Pro drill insert. e feed (NOTICE: Do not reduce feed below old of good chip formation). If possible, om solid.

section A30

T-A[®] Drilling System

Imperial	
GEN2 T-A [®]	
High-Speed Steel	41 - 42
Carbide	
T-A [®]	
High-Speed Steel	
Carbide	
T-A [®] Flat Bottom Geometry	
High-Speed Steel	
Carbide	
T-A [®] Diamond Coated	
Carbide	53
Coolant Recommendations	
High-Speed Steel	
Carbide	56
Metric	
GEN2 T-A®	
High-Speed Steel	
Carbide	
/T-A®	
High-Speed Steel	61 - 62
Carbide	63 - 64
T-A [®] Flat Bottom Geometry	
High-Speed Steel	
Carbide	
T-A [®] Diamond Coated	
Carbide	69
Coolant Recommendations	
High-Speed Steel	
Carbide	
Troubleshooting Guide	
Deep Hole Drilling Guidelines	

GEN2 T-A[®] Recommended Drilling Data | Imperial (inch)

HSS Inserts

				SF	M	Feed Rate (IPI	R) by Diameter
ISO	Material	Hardness (BHN)	HSS Grade	TiN	AM200®	3/8" - 1/2"	33/64" - 11/16"
	Free-Machining Steel	100 - 150	HSS	200	325	0.008	0.012
	1118, 1215, 12L14, etc.	150 - 200	HSS	180	300	0.007	0.011
		200 - 250	HSS	160	280	0.006	0.010
	Low-Carbon Steel	85 - 125	HSS	170	290	0.008 🛠	0.010
	1010, 1020, 1025, 1522, 1144, etc.	125 - 175	HSS	160	275	0.007 🛠	0.010
		175 - 225	HSS	150	260	0.006 🛠	0.009
		225 - 275	HSS	140	240	0.005 🛠	0.009
	Medium-Carbon Steel	125 - 175	HSS	160	275	0.007	0.010
	1030, 1040, 1050, 1527, 1140, 1151, etc.	175 - 225	HSS	150	260	0.006	0.009
		225 - 275	HSS	140	240	0.006	0.009
		275 - 325	SC	130	225	0.005	0.008
Ρ	Alloy Steel	125 - 175	HSS	150	240	0.007	0.010
	4140, 5140, 8640, etc.	175 - 225	HSS	140	225	0.006	0.009
		225 - 275	HSS	130	210	0.006	0.009
		275 - 325	SC	120	195	0.005	0.008
		325 - 375	SC	110	180	0.004	0.007
	High-Strength Alloy	225 - 300	SC	80	125	0.006 �	0.009
	4340, 4330V, 300M, etc.	300 - 350	SC	60	100	0.005 *	0.008
	Churchung Chool	350 - 400	SC	50	80	0.004 �	0.007
	Structural Steel	100 - 150	HSS	140	235	0.008 �	0.011
	A36, A285, A516, etc.	150 - 250	HSS	120	190	0.006 �	0.010
	To al Cha al	250 - 350	SC	100	160	0.005 �	0.009
	Tool Steel	150 - 200	SC	80	125	0.004	0.007
	H-13, H-21, A-4, 0-2, S-3, etc.	200 - 250	SC	60	105	0.004	0.007
	High-Temp Alloy	140 - 220	SC	30	45	0.004 🛠	0.007
	Hastelloy B, Inconel 600, etc.	220 - 310	SC	25	40	0.004 🛠	0.006
s	Titanium Alloy	140 - 220	SC	35	55	0.004 🛠	0.007
5		220 - 310	SC	30	50	0.003 🛠	0.006
	Aerospace Alloy	185 - 275	SC	75	110	0.006 🛠	0.008
	S82	275 - 350	SC	60	100	0.005 🛠	0.007
	Stainless Steel 400 Series	185 - 275	SC	75	110	0.006 🛠	0.008
	416, 420, etc.	275 - 350	SC	60	100	0.005 🛠	0.008
	Stainless Steel 300 Series	135 - 185	SC	75	110	0.003 🛠	0.007
Μ	304, 316, 17-4PH, etc.	185 - 275	SC	60	100	0.003 🛠	0.007
	Super Duplex Stainless Steel	135 - 185	SC	60	85	0.003 🛠	0.007
	Super Duplex Stamless Steel	185 - 275	SC	50	70	0.003 🛠	0.007
		105 275	50		70	0.003 +	0.000
	Wear Plate	400	SC	45	70	0.003 🛠	0.006
	Hardox [®] , AR400, T-1, etc.	500	SC	35	45	0.002 🛠	0.005
Н		600	-	-	_	0.004 �	0.006
	Hardened Steel	300 - 400	SC	50	95	_	-
		400 - 500	SC	35	45	0.002 🛠	0.005
	Nodular, Grey, Ductile Cast Iron	120 - 150	HSS	170	290	0.008	0.012
		150 - 200	HSS	150	290	0.007	0.012
к		200 - 220	HSS	130	200	0.006	0.009
Ň		220 - 260	SC	110	190	0.005	0.005
		260 - 320	SC	90	155	0.005	0.007
		1		1		r T	l T
	Cast Aluminum	30	HSS	600	-	0.009	0.015
		180	HSS	300	_	0.008	0.013
	Wrought Aluminum	30	HSS	600	900	0.005	0.013
Ν		180	HSS	300	650	0.005	0.007
	Aluminum Bronze	100 - 200	SC	170	270	0.006	0.009
		200 - 250	SC	130	210	0.005	0.007
	Brass	100	HSS	300	470	0.007	0.011
	Copper	60	SC	130	190	0.003 🛠	0.004

* Contact our Application Engineering department for assistance when machining these materials

45/64" 31/32" 1-13/8" 1-29/32" 2-19/32" 2-19/32" 0.016 0.019 0.020 0.023 0.028 0.014 0.016 0.020 0.023 0.028 0.014 0.016 0.020 0.023 0.028 0.014 0.016 0.023 0.027 0.013 0.016 0.018 0.021 0.024 0.013 0.016 0.018 0.021 0.024 0.024 0.013 0.016 0.018 0.021 0.024 0.013 0.016 0.018 0.021 0.024 0.013 0.016 0.018 0.021 0.022 0.013 0.016 0.017 0.019 0.022 0.013 0.016 0.017 0.019 0.022 0.013 0.016 0.017 0.019 0.022 0.011 0.014 0.017 0.020 0.011 0.021 0.011 0.014 0.017 0.020 0.016		Feed Rate (IPR) by Diameter						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Í.	1	1	1			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				1				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Ì	1	1	1			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0.016	0.018					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					0.024			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					0.022			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.014	1	1	1	î .			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.013	0.016	0.017	0.019	0.022			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.013	0.016	0.017	0.019	0.022			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0.015			0.020			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.011	0.013	0.014	0.017	0.020			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.010	0.012	0.014	0.017	0.020			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.009	0.011	0.012	0.015	0.018			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.015	0.017	0.018	0.021	0.026			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.013	0.015	0.016	0.019	0.024			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.012	0.013	0.014	0.017	0.020			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.010	0.012	0.012	0.015	0.017			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.010	0.012	0.012	0.015	0.017			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.000	0.011	0.012	0.015	0.017			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					1			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Ì	1	1	İ			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1						
0.009 0.011 0.014 0.016 0.020 0.008 0.010 0.012 0.014 0.018 0.008 0.011 0.014 0.016 0.020 0.007 0.010 0.012 0.014 0.018 0.008 0.011 0.012 0.014 0.018 0.008 0.011 0.014 0.016 0.020 0.007 0.010 0.012 0.014 0.018 0.007 0.010 0.012 0.016 0.018 0.007 0.008 0.009 0.012 0.016 0.018 0.007 0.008 0.010 0.012 0.016 0.018 0.007 0.008 0.010 0.012 0.016 0.018 - <td></td> <td></td> <td></td> <td></td> <td></td>								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		r T	1		l T			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			1		·			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
0.007 0.010 0.012 0.014 0.018 0.008 0.009 0.012 0.016 0.018 0.007 0.008 0.010 0.012 0.016 0.009 0.011 0.012 0.016 0.018 0.009 0.011 0.012 0.016 0.018 - - - - - - 0.007 0.009 0.010 0.012 0.016 - - - - - - 0.007 0.009 0.010 0.012 0.016 0.016 0.020 0.024 0.027 0.030 0.015 0.019 0.022 0.025 0.028 0.013 0.017 0.018 0.021 0.024 0.011 0.014 0.014 0.017 0.020 0.010 0.012 0.012 0.014 0.016 0.018 0.023 0.022 0.025 0.025 0.016		1	1	1	1			
0.008 0.009 0.012 0.016 0.018 0.007 0.008 0.010 0.012 0.016 0.009 0.011 0.012 0.016 0.018 - - - - - - 0.007 0.009 0.011 0.012 0.016 0.018 - - - - - - - 0.007 0.009 0.010 0.012 0.016 0.018 - - - - - - - 0.007 0.009 0.010 0.012 0.016 0.016 0.016 0.020 0.024 0.027 0.030 0.013 0.017 0.018 0.021 0.024 0.011 0.014 0.014 0.017 0.020 0.010 0.012 0.012 0.014 0.016 0.018 0.023 0.022 0.025 0.025 0.016 0.020 <				1				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.007	0.010	0.012	0.014	0.018			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.008	0.009	0.012	0.016	0.018			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
- -								
0.016 0.020 0.024 0.027 0.030 0.015 0.019 0.022 0.025 0.028 0.013 0.017 0.018 0.021 0.024 0.011 0.014 0.014 0.017 0.020 0.010 0.012 0.012 0.014 0.016 0.018 0.023 0.022 0.025 0.025 0.016 0.020 0.022 0.025 0.025 0.016 0.020 0.022 0.025 0.025 0.016 0.020 0.022 0.025 0.025 0.016 0.020 0.022 0.025 0.025 0.016 0.020 0.022 0.025 0.025 0.012 0.014 0.022 0.025 0.025 0.012 0.015 0.017 0.019 0.021 0.009 0.011 0.014 0.016 0.018		-	-	-	-			
0.015 0.019 0.022 0.025 0.028 0.013 0.017 0.018 0.021 0.024 0.011 0.014 0.014 0.017 0.020 0.010 0.012 0.012 0.014 0.016 0.018 0.023 0.022 0.025 0.025 0.016 0.020 0.022 0.025 0.025 0.016 0.020 0.022 0.025 0.025 0.016 0.020 0.022 0.025 0.025 0.016 0.020 0.022 0.025 0.025 0.016 0.020 0.022 0.025 0.025 0.012 0.014 0.022 0.025 0.025 0.012 0.015 0.017 0.019 0.021 0.009 0.011 0.014 0.016 0.018	0.007	0.009	0.010	0.012	0.016			
0.013 0.017 0.018 0.021 0.024 0.011 0.014 0.014 0.017 0.020 0.010 0.012 0.012 0.014 0.016 0.018 0.023 0.022 0.025 0.025 0.016 0.020 0.022 0.025 0.025 0.016 0.020 0.022 0.025 0.025 0.016 0.020 0.022 0.025 0.025 0.016 0.020 0.022 0.025 0.025 0.016 0.020 0.022 0.025 0.025 0.012 0.014 0.022 0.025 0.025 0.012 0.015 0.017 0.019 0.021 0.009 0.011 0.014 0.016 0.018	0.016	0.020	0.024	0.027	0.030			
0.011 0.014 0.014 0.017 0.020 0.010 0.012 0.012 0.014 0.016 0.018 0.023 0.022 0.025 0.025 0.016 0.020 0.022 0.025 0.025 0.016 0.020 0.022 0.025 0.025 0.012 0.014 0.022 0.025 0.025 0.012 0.014 0.022 0.025 0.025 0.012 0.014 0.022 0.025 0.025 0.012 0.015 0.017 0.019 0.021 0.009 0.011 0.014 0.016 0.018	0.015	0.019	0.022	0.025	0.028			
0.010 0.012 0.012 0.012 0.014 0.016 0.018 0.023 0.022 0.025 0.025 0.016 0.020 0.022 0.025 0.025 0.016 0.020 0.022 0.025 0.025 0.016 0.020 0.022 0.025 0.025 0.012 0.014 0.022 0.025 0.025 0.012 0.014 0.022 0.025 0.025 0.012 0.015 0.017 0.019 0.021 0.009 0.011 0.014 0.016 0.018	0.013	0.017	0.018	0.021	0.024			
0.018 0.023 0.022 0.025 0.025 0.016 0.020 0.022 0.025 0.025 0.016 0.020 0.022 0.025 0.025 0.016 0.020 0.022 0.025 0.025 0.012 0.014 0.022 0.025 0.025 0.012 0.015 0.017 0.019 0.021 0.009 0.011 0.014 0.016 0.018	0.011	0.014	0.014	0.017	0.020			
0.016 0.020 0.022 0.025 0.025 0.016 0.020 0.022 0.025 0.025 0.012 0.014 0.022 0.025 0.025 0.012 0.015 0.017 0.019 0.021 0.009 0.011 0.014 0.016 0.018	0.010	0.012	0.012	0.014	0.016			
0.016 0.020 0.022 0.025 0.025 0.012 0.014 0.022 0.025 0.025 0.012 0.015 0.017 0.019 0.021 0.009 0.011 0.014 0.016 0.018	0.018	0.023	0.022	0.025	0.025			
0.012 0.014 0.022 0.025 0.025 0.012 0.015 0.017 0.019 0.021 0.009 0.011 0.014 0.016 0.018	0.016	0.020		0.025	0.025			
0.012 0.015 0.017 0.019 0.021 0.009 0.011 0.014 0.016 0.018	0.016	0.020	0.022	0.025	0.025			
0.009 0.011 0.014 0.016 0.018	0.012	0.014	0.022	0.025	0.025			
	0.012	0.015	0.017	0.019	0.021			
0.013 0.018 0.019 0.021 0.023		0.011	0.014	0.016	0.018			
	0.013	0.018	0.019	0.021	0.023			
0.007 0.010 0.009 0.011 0.012	0.007	0.010	0.009	0.011	0.012			

Deep Hole Drilling Speed and Feed Adjustment

	A Holder Length						
	Extended	Long	Long Plus	XL	3XL		
Speed	0.90	0.85	0.80	0.80	0.75		
Feed	-	0.95	0.90	0.90	0.90		

Recommended Speed and Feed Example

If the recommended speed and feed is 200 SFM and 0.008 IPR for a standard length holder, then the speed and feed using a 3XL holder in the same application would be 150 SFM and 0.007 IPR.

200 • 0.75 = 150 SFM	0.008 • 0.90 = 0.007 IPR

Form	ulas	
1.	RPM	= (3.82 • SFM) / DIA
	where:	
	RPM	= revolutions per minute (rev/min)
	SFM	= speed (ft/min)
	DIA	= diameter of drill (inch)
2.	IPM	= RPM • IPR
	where:	
	IPM	= inches per minute (in/min)
	RPM	= revolutions per minute (rev/min)
	IPR	= feed rate (in/rev)
3.	SFM	= RPM • 0.262 • DIA
	where:	
	SFM	= speed (ft/min)
	RPM	= revolutions per minute (rev/min)
	DIA	= diameter of drill (inch)
1		

A WARNING Tool failure can cause serious injury. To prevent:

- When using holders without support bushing, use a short T-A® holder to establish an initial hole that is a minimum of 2 diameters deep.

- Do not rotate tool holder more than 50 RPM unless it is engaged with the workpiece or fixture.

GEN2 T-A[®] Recommended Drilling Data | Imperial (inch)

Carbide Inserts

				SFM		Feed Rate (IPF	R) by Diameter	
ISO	Material	Hardness (BHN)	Carbide Grade	AM300®	3/8" - 1/2"	33/64" - 11/16"	45/64" - 15/16"	31/32" - 1-3/8"
	Free-Machining Steel	100 - 150	C1	480	0.008	0.012	0.016	0.019
	1118, 1215, 12L14, etc.	150 - 200	C1	415	0.007	0.011	0.015	0.017
		200 - 250	C1	390	0.006	0.010	0.014	0.016
	Low-Carbon Steel	85 - 125	C1	450	0.008 �	0.010	0.014	0.018
	1010, 1020, 1025, 1522,	125 - 175	C1	390	0.007 🛠	0.010	0.014	0.017
	1144, etc.	175 - 225	C1	355	0.006 🛠	0.009	0.013	0.016
		225 - 275	C1	310	0.005 🛠	0.009	0.013	0.016
	Medium-Carbon Steel	125 - 175	C1	390	0.007	0.010	0.014	0.017
	1030, 1040, 1050, 1527,	175 - 225	C1	355	0.006	0.009	0.013	0.016
	1140, 1151, etc.	225 - 275	C1	310	0.006	0.009	0.013	0.016
		275 - 325	C1	265	0.005	0.008	0.012	0.015
	Alloy Steel	125 - 175	C1	375	0.007	0.010	0.014	0.017
Р	4140, 5140, 8640, etc.	175 - 225	C1	345	0.006	0.009	0.013	0.016
		225 - 275	C1	310	0.006	0.009	0.013	0.016
		275 - 325	C1	285	0.005	0.008	0.012	0.015
		325 - 375	C1	255	0.004	0.007	0.011	0.014
	High-Strength Alloy	225 - 300	C1	230	0.006 🛠	0.009	0.011	0.013
	4340, 4330V, 300M, etc.	300 - 350	C1	205	0.005 🛠	0.008	0.010	0.012
		350 - 400	C1	185	0.004 🛠	0.007	0.009	0.011
	Structural Steel	100 - 150	C1	355	0.008 🛠	0.011	0.015	0.017
	A36, A285, A516, etc.	150 - 250	C1	285	0.006 🛠	0.010	0.013	0.015
		250 - 350	C1	265	0.005 🛠	0.009	0.012	0.013
	Tool Steel	150 - 200	C1	255	0.007	0.007	0.010	0.012
	H-13, H-21, A-4, 0-2, S-3, etc.	200 - 250	C1	195	0.007	0.007	0.010	0.012
	High-Temp Alloy	140 - 220	C2	120	0.004 🛠	0.007	0.009	0.011
	Hastelloy B, Inconel 600, etc.	220 - 310	C2	95	0.004 🛠	0.006	0.008	0.010
s	Titanium Alloy	140 - 220	C2	140	0.004 🛠	0.007	0.008	0.011
3		220 - 310	C2	110	0.003 🛠	0.006	0.007	0.009
	Aerospace Alloy	185 - 275	C2	240	0.005 🛠	0.006	0.007	0.009
	S82	275 - 350	C2	180	0.004 🛠	0.005	0.006	0.008
	Stainless Steel 400 Series	185 - 275	C2	240	0.007 🛠	0.009	0.012	0.014
	416, 420, etc.	275 - 350	C2	180	0.006 🛠	0.008	0.011	0.012
м	Stainless Steel 300 Series	135 - 185	C2	240	0.006 🛠	0.007	0.009	0.012
IVI	304, 316, 17-4PH, etc.	185 - 275	C2	180	0.005 🛠	0.006	0.008	0.009
	Super Duplex Stainless Steel	135 - 185	C2	125	0.005 🛠	0.007	0.008	0.010
		185 - 275	C2	100	0.004 🛠	0.006	0.007	0.009

* Contact our Application Engineering department for assistance when machining these materials

				SFM		Feed Rate (IPF	R) by Diameter	
ISO	Material	Hardness (BHN)	Carbide Grade	AM300®	3/8" - 1/2"	33/64" - 11/16"	45/64" - 15/16"	31/32" - 1-3/8"
	Wear Plate	400	C2	150	0.003 🛠	0.005	0.008	0.010
	Hardox [®] , AR400, T-1, etc.	500	C2	120	0.002 🛠	0.004	0.006	0.008
Н		600	C2	100	0.001 🛠	0.003	0.005	0.006
	Hardened Steel	300 - 400	C1	150	0.004 🛠	0.006	0.009	0.011
		400 - 500	C1	120	0.003 🛠	0.005	0.008	0.010
	Nodular, Grey, Ductile Cast Iron	120 - 150	C2	500	0.008	0.012	0.015	0.019
		150 - 200	C2	480	0.007	0.011	0.013	0.017
K		200 - 220	C2	430	0.006	0.009	0.012	0.015
		220 - 260	C2	370	0.005	0.008	0.011	0.013
		260 - 320	C2	335	0.005	0.007	0.010	0.011
	Cast Aluminum	30	C2	975	0.009	0.015	0.018	0.023
		180	C2	730	0.008	0.013	0.016	0.020
	Wrought Aluminum	30	C2	1385	0.005	0.013	0.016	0.020
N		180	C2	975	0.005	0.007	0.012	0.014
	Aluminum Bronze	100 - 200	C2	360	0.006	0.009	0.012	0.015
		200 - 250	C2	300	0.005	0.007	0.009	0.011
	Brass	100	C2	650	0.007	0.011	0.013	0.018
	Copper	60	C2	420	0.003 🛠	0.004	0.007	0.010

* Contact our Application Engineering department for assistance when machining these materials

Deep Hole Drilling Speed and Feed Adjustment

		A Holder Length							
	Extended	Long	Long Plus	XL	3XL				
Speed	0.90	0.85	0.80	0.80	0.75				
Feed	-	0.95	0.90	0.90	0.90				

Recommended Speed and Feed Example

If the recommended speed and feed is 200 SFM and 0.008 IPR for a standard length holder, then the speed and feed using a 3XL holder in the same application would be 150 SFM and 0.007 IPR.

200 • 0.75 = 150 SFM

0.008 • 0.90 = 0.007 IPR

Formulas

1.	RPM	= (3.82 • SFM) / DIA	2.	IPM	= RPM • IPR	3.	SFM	= RPM • 0.262 • DIA
	where:			where:			where:	
	RPM	= revolutions per minute (rev/min)		IPM	= inches per minute (in/min)		SFM	= speed (ft/min)
	SFM	= speed (ft/min)		RPM	= revolutions per minute (rev/min)		RPM	= revolutions per minute (rev/min)
	DIA	= diameter of drill (inch)		IPR	= feed rate (in/rev)		DIA	= diameter of drill (inch)

• WARNING Tool failure can cause serious injury. To prevent:

- When using holders without support bushing, use a short T-A® holder to establish an initial hole that is a minimum of 2 diameters deep.

- Do not rotate tool holder more than 50 RPM unless it is engaged with the workpiece or fixture.

T-A[®] Recommended Drilling Data | Imperial (inch)

HSS Inserts

					SFM		Feed Rate (IPI	R) by Diameter
		Hardness	HSS			60	3/8" -	33/64" -
ISO	Material	(BHN)	Grade	TiN	TiAIN	TiCN	1/2"	11/16"
	Free-Machining Steel	100 - 150	HSS	200	280	260	0.007	0.010
	1118, 1215, 12L14, etc.	150 - 200 200 - 250	HSS HSS	180 160	260 240	235 210	0.007	0.010
	Low-Carbon Steel	85 - 125	HSS	170	240	210	0.006 �	0.010
	1010, 1020, 1025, 1522, 1144, etc.	125 - 175	HSS	160	240	210	0.006 🛠	0.009
	1010, 1020, 1023, 1322, 1144, etc.	175 - 225	HSS	150	240	195	0.005 �	0.005
		225 - 275	HSS	130	210	180	0.005 *	0.008
	Medium-Carbon Steel	125 - 175	HSS	160	240	210	0.006	0.009
	1030, 1040, 1050, 1527, 1140, 1151, etc.	175 - 225	HSS	150	225	195	0.005	0.008
		225 - 275	HSS	140	210	180	0.005	0.008
		275 - 325	SC, PC	130	195	170	0.004	0.007
	Alloy Steel	125 - 175	HSS	150	210	195	0.006	0.008
Р	4140, 5140, 8640, etc.	175 - 225	HSS	140	195	180	0.005	0.008
		225 - 275	HSS	130	180	170	0.005	0.007
		275 - 325	SC, PC	120	170	155	0.004	0.006
		325 - 375	SC, PC	110	155	145	0.003	0.006
	High-Strength Alloy	225 - 300	SC, PC	80	110	100	0.005 🛠	0.007
	4340, 4330V, 300M, etc.	300 - 350	SC, PC	60	85	80	0.004 🛠	0.007
		350 - 400	PC	50	70	65	0.003 🛠	0.006
	Structural Steel	100 - 150	HSS	140	200	180	0.006 🛠	0.010
	A36, A285, A516, etc.	150 - 250	HSS	120	170	155	0.005 🛠	0.009
	Technical	250 - 350	SC, PC	100	140	130	0.003 �	0.008
	Tool Steel	150 - 200	SC SC	80	110	105	0.004	0.006
	H-13, H-21, A-4, 0-2, S-3, etc.	200 - 250	SC, PC	60	90	85	0.004	0.006
	High-Temp Alloy	140 - 220	SC, PC	30	40	35	0.003 🛠	0.007
	Hastelloy B, Inconel 600, etc.	220 - 310	PC	25	35	30	0.003 🛠	0.006
s	Titanium Alloy	140 - 220	SC, PC	35	50	45	0.003 🛠	0.007
		220 - 310	PC	30	45	35	0.003 🛠	0.006
	Aerospace Alloy	185 - 275	SC, PC	75	105	95	0.006 🛠	0.008
	S82	275 - 350	SC, PC	60	90	80	0.005 🛠	0.007
	Stainless Steel 400 Series	185 - 275	SC, PC	75	105	95	0.009	0.010
	416, 420, etc.	275 - 350	SC, PC	60	90	80	0.008	0.009
м	Stainless Steel 300 Series	135 - 185	SC, PC	75	105	95	0.007	0.007
IVI	304, 316, 17-4PH, etc.	185 - 275	SC, PC	60	90	80	0.006	0.006
	Super Duplex Stainless Steel	135 - 185	SC, PC	60	80	70	0.005	0.005
		185 - 275	SC, PC	50	65	60	0.004	0.005
	Wear Plate	400	SC, PC	45	70	55	0.003 🛠	0.006
	Hardox [®] , AR400, T-1, etc.	500	PC	35	45	40	0.002 🛠	0.005
н	,, ,	600	N/A	-	-	-	-	-
	Hardened Steel	300 - 400	PC	50	95	70	0.003 🛠	0.006
		400 - 500	PC	35	45	40	0.002 🛠	0.005
	Nodular, Grey, Ductile Cast Iron	120 - 150	HSS	170	250	220	0.007	0.012
	Nouulai, Grey, Ductile Cast Iron	150 - 200	HSS	170	250	195	0.007	0.012
к		200 - 220	HSS	130	195	195	0.006	0.011
Ň		220 - 220	SC, PC	130	195	170	0.005	0.009
		260 - 320	SC, PC	90	135	145	0.003	0.007
								n N
	Cast Aluminum	30	HSS	600	850	750	0.008	0.013
-		180	HSS	300	450	400	0.008	0.013
	Wrought Aluminum	30	HSS	600	850	750	0.004	0.006
Ν		180	HSS	300	450	400	0.008	0.013
	Aluminum Bronze	100 - 200	SC	170	250	220	0.006	0.011
	Proc	200 - 250	SC	130	190	170	0.005	0.007
	Brass	100	HSS	300	445	400	0.007	0.012
	Copper	60	SC	130	165	150	0.002 🛠	0.003

* Contact our Application Engineering department for assistance when machining these materials

Feed Rate (IPR) by Diameter						
45/64" - 15/16"	31/32" - 1-3/8"	1-13/32" - 1-7/8"	1-29/32" - 2-9/16"	2-19/32" - 4-1/2"		
0.013	0.016	0.020	0.023	0.028		
0.013	0.016	0.020	0.023	0.028		
0.013	0.010	0.020	0.023	0.028		
0.012	0.010	0.019	0.023	0.020		
0.012	0.015	0.019	0.023	0.027		
0.010	0.013	0.015	0.021	0.024		
0.010	0.014	0.018	0.021	0.024		
0.012	0.015	0.019	0.023	0.027		
0.010	0.014	0.018	0.021	0.024		
0.010	0.014	0.018	0.021	0.024		
0.009	0.012	0.016	0.019	0.022		
0.010	0.014	0.017	0.019	0.022		
0.010	0.014	0.017	0.019	0.022		
0.010	0.014	0.017	0.019	0.022		
0.009	0.012	0.015	0.017	0.020		
0.009	0.012	0.015	0.017	0.020		
0.009	0.010	0.014	0.017	0.020		
0.009	0.010	0.014	0.017	0.020		
0.008	0.009	0.012	0.015	0.018		
0.012	0.014	0.018	0.021	0.026		
0.010	0.012	0.016	0.019	0.024		
0.009	0.010	0.014	0.017	0.020		
0.008	0.010	0.012	0.015	0.017		
0.008	0.010	0.012	0.015	0.017		
			1			
0.008	0.010	0.012	0.015	-		
0.007	0.008	0.010	0.012	_		
0.008	0.010	0.012	0.015	-		
0.007	0.008	0.010	0.012	_		
0.009	0.010	0.014	0.016	0.020		
0.008	0.008	0.012	0.014	0.018		
0.011	0.012	0.013	0.014	0.015		
0.010	0.011	0.012	0.013	0.014		
0.008	0.008	0.009	0.009	0.010		
0.007	0.007	0.008	0.008	0.009		
0.006	0.006	0.007	0.008	0.008		
0.005	0.006	0.006	0.007	0.007		
	1			1		
0.008	0.009	0.012	0.016	0.018		
0.007	0.008	0.010	0.012	0.016		
_	-	-	-	-		
0.008	0.009	0.012	0.016	0.018		
0.007	0.008	0.010	0.012	0.016		
0.016	0.020	0.024	0.027	0.030		
0.014	0.018	0.022	0.025	0.028		
0.012	0.016	0.018	0.021	0.024		
0.009	0.012	0.014	0.017	0.020		
0.007	0.009	0.012	0.014	0.016		
				1		
0.016	0.020	0.022	0.025	0.025		
0.016	0.018	0.022	0.025	0.025		
0.010	0.012	0.022	0.025	0.025		
0.016	0.018	0.022	0.025	0.025		
0.014	0.018	0.022	0.026	0.028		
0.009	0.012	0.014	0.017	0.020		
0.016	0.020	0.024	0.028	0.030		
0.006	0.008	0.012	0.014	0.016		

Deep Hole Drilling Speed and Feed Adjustment

	A Holder Length						
	Extended	Long	Long Plus	XL	3XL		
Speed	0.90	0.85	0.80	0.80	0.75		
Feed	-	0.95	0.90	0.90	0.90		

Recommended Speed and Feed Example

If the recommended speed and feed is 200 SFM and 0.008 IPR for a standard length holder, then the speed and feed using a 3XL holder in the same application would be 150 SFM and 0.007 IPR.

200 • 0.75 = 150 SFM	0.008 • 0.90 = 0.007 IPR

Form	ulas	
1.	RPM	= (3.82 • SFM) / DIA
	where:	
	RPM	= revolutions per minute (rev/min)
	SFM	= speed (ft/min)
	DIA	= diameter of drill (inch)
2.	IPM	= RPM • IPR
	where:	
	IPM	= inches per minute (in/min)
	RPM	= revolutions per minute (rev/min)
	IPR	= feed rate (in/rev)
3.	SFM	= RPM • 0.262 • DIA
	where:	
	SFM	= speed (ft/min)
	RPM	= revolutions per minute (rev/min)
	DIA	= diameter of drill (inch)
1		

A WARNING Tool failure can cause serious injury. To prevent:

- When using holders without support bushing, use a short T-A® holder to establish an initial hole that is a minimum of 2 diameters deep.

- Do not rotate tool holder more than 50 RPM unless it is engaged with the workpiece or fixture.

T-A[®] Recommended Drilling Data | Imperial (inch)

Carbide Inserts

					SFM			Feed Ra	te (IPR) by D	iameter	
ISO	Material	Hardness (BHN)	Carbide Grade	Tin	TIAIN	TiCN	3/8" - 1/2"	33/64" - 11/16"	45/64" - 15/16"	31/32" - 1-3/8"	1-13/32" - 1-7/8"
	Free-Machining Steel	100 - 150	C5	320	420	375	0.008	0.012	0.015	0.018	0.021
	1118, 1215, 12L14, etc.	150 - 200	C5	280	360	325	0.007	0.012	0.013	0.016	0.019
	1110, 1213, 12114, etc.	200 - 250	C5	260	340	295	0.007	0.011	0.014	0.015	0.017
	Low-Carbon Steel	85 - 125	C5	300	390	360	0.008 �	0.010	0.013	0.017	0.019
	1010, 1020, 1025, 1522,	125 - 175	C5	260	340	295	0.007 �	0.010	0.013	0.016	0.018
	1144, etc.	175 - 225	C5	240	310	270	0.007 \$	0.009	0.013	0.015	0.017
	1144, 600.	225 - 275	C5	240	270	245	0.005 �	0.009	0.012	0.015	0.017
	Medium-Carbon Steel	125 - 175	C5	260	340	295	0.007	0.000	0.012	0.015	0.017
	1030, 1040, 1050, 1527,	175 - 225	C5	200	310	275	0.007	0.010	0.013	0.015	0.013
	1030, 1040, 1050, 1527, 1140, 1151, etc.	225 - 275	C5	240	270	235	0.006	0.009	0.012	0.015	0.017
	1140, 1151, 800.	275 - 325	C5	180	230	235	0.005	0.003	0.012	0.013	0.017
	Alloy Steel	125 - 175	C5	250	325	205	0.003	0.008	0.011	0.014	0.010
Ρ	4140, 5140, 8640, etc.	175 - 225	C5	230	300	260	0.007	0.010	0.013	0.015	0.013
	4140, 5140, 8040, 80.	225 - 275	C5	230	270	235	0.006	0.009	0.012	0.015	0.017
		275 - 325	C5	200	250	235	0.005	0.003	0.012	0.013	0.017
		325 - 375	C5	170	230	195	0.003	0.008	0.011	0.014	0.015
	High-Strength Alloy	225 - 300	C5	170	220	195	0.004	0.007	0.010	0.013	0.015
	4340, 4330V, 300M, etc.	300 - 350	C5	140	180	160	0.005 🛠	0.009	0.010	0.012	0.013
	4340, 4330V, 300W, etc.		C5	140	160		0.003 🛠		0.009	0.011	0.014
	Characterized Charael	350 - 400				140		0.007	1		
	Structural Steel	100 - 150	C5	240	310	275	0.008 �	0.011	0.014	0.016	0.018
	A36, A285, A516, etc.	150 - 250	C5 C5	200	250	225 205	0.006 �	0.010	0.012	0.014	0.016
	To al Cha al	250 - 350		180	230			0.009	0.011	0.012	0.014
	Tool Steel	150 - 200	C5	160	220	190	0.004	0.007	0.009	0.011	0.013
	H-13, H-21, A-4, 0-2, S-3, etc.	200 - 250	C5	120	170	145	0.004	0.007	0.009	0.011	0.013
	High-Temp Alloy	140 - 220	C2	80	105	90	0.004 🛠	0.007	0.009	0.011	0.013
	Hastelloy B, Inconel 600, etc.	220 - 310	C2	60	85	70	0.004 🛠	0.006	0.008	0.010	0.012
s	Titanium Alloy	140 - 220	C2	100	125	105	0.004 🛠	0.007	0.009	0.011	0.013
5		220 - 310	C2	80	110	90	0.004 🛠	0.006	0.008	0.010	0.012
	Aerospace Alloy	185 - 275	C2	160	210	185	0.007 🛠	0.006	0.011	0.014	0.016
	S82	275 - 350	C2	120	160	140	0.006 🛠	0.008	0.010	0.012	0.014
	Stainless Steel 400 Series	185 - 275	C2	160	210	185	0.007 💠	0.008	0.011	0.014	0.016
	416, 420, etc.	275 - 350	C2 C2	180	160	185	0.007 🛠	0.008	0.011	0.014	0.016
	Stainless Steel 300 Series	135 - 185	C2 C2	120	210	140	0.005 🛠	0.007	0.010	0.012	0.014
Μ		185 - 275	C2 C2	180	160	185	0.003 💸	0.007	0.009	0.010	0.012
	304, 316, 17-4PH, etc. Super Duplex Stainless Steel	135 - 275	C2 C2	80	160	95	0.004 🛠	0.006	0.008	0.009	0.010
	Super Duplex Stalliess Steel	185 - 275	C2 C2	60	80	95 70	0.004 💸	0.007	0.008	0.009	0.001
	L	1 103 - 2/3		UU	00	70	0.003 🐨	0.000	0.007	0.008	0.009

* Contact our Application Engineering department for assistance when machining these materials

				SFM				Feed Ra	te (IPR) by D	iameter	
ISO	Material	Hardness (BHN)	Carbide Grade	Tin	TIAIN	TiCN	3/8" - 1/2"	33/64" - 11/16"	45/64" - 15/16"	31/32" - 1-3/8"	1-13/32" - 1-7/8"
	Wear Plate	400	C5	75	115	100	0.003 🛠	0.006	0.008	0.010	0.012
	Hardox [®] , AR400, T-1, etc.	500	C5	50	85	70	0.002 🛠	0.005	0.006	0.008	0.010
Н		600	C5	35	75	55	0.001 🛠	0.004	0.005	0.006	0.008
	Hardened Steel	300 - 400	C5	110	140	130	0.004 🛠	0.006	0.009	0.011	0.013
		400 - 500	C5	65	85	75	0.003 🛠	0.005	0.008	0.009	0.011
	Nodular, Grey,	120 - 150	C2, C3	320	460	415	0.008	0.012	0.015	0.019	0.023
	Ductile Cast Iron	150 - 200	C2, C3	270	400	335	0.007	0.011	0.013	0.017	0.021
K		200 - 220	C2, C3	240	360	305	0.006	0.009	0.012	0.015	0.018
		220 - 260	C2, C3	210	310	260	0.005	0.008	0.011	0.013	0.015
		260 - 320	C2, C3	180	270	225	0.005	0.007	0.010	0.011	0.013
	Cast Aluminum	30	C2	1200	1500	1330	0.010	0.013	0.018	0.020	0.022
		180	C2	800	1000	900	0.009	0.013	0.016	0.018	0.020
	Wrought Aluminum	30	C2	1200	1500	1330	0.004	0.006	0.010	0.012	0.014
N		180	C2	800	1000	900	0.008	0.013	0.014	0.018	0.020
Ν	Aluminum Bronze	100 - 200	C2	275	360	325	0.005	0.008	0.010	0.014	0.017
		200 - 250	C2	210	305	260	0.004	0.007	0.007	0.010	0.013
	Brass	100	C2	425	600	520	0.006	0.009	0.011	0.015	0.018
	Copper	60	C2	260	390	325	0.002 🛠	0.003	0.004	0.006	0.010

* Contact our Application Engineering department for assistance when machining these materials

Deep Hole Drilling Speed and Feed Adjustment

		🛕 Holder Length										
	Extended	Long	Long Plus	XL	3XL							
Speed	0.90	0.85	0.80	0.80	0.75							
Feed	-	0.95	0.90	0.90	0.90							

Recommended Speed and Feed Example

If the recommended speed and feed is 200 SFM and 0.008 IPR for a standard length holder, then the speed and feed using a 3XL holder in the same application would be 150 SFM and 0.007 IPR.

200 • 0.75 = 150 SFM

0.008 • 0.90 = 0.007 IPR

Formulas

1.	RPM	= (3.82 • SFM) / DIA	2. IPM	= RPM • IPR	3.	SFM	= RPM • 0.262 • DIA
	where:		where:			where:	
	RPM	= revolutions per minute (rev/min)	IPM	= inches per minute (in/min)		SFM	= speed (ft/min)
	SFM	= speed (ft/min)	RPM	= revolutions per minute (rev/min)		RPM	= revolutions per minute (rev/min)
	DIA	= diameter of drill (inch)	IPR	= feed rate (in/rev)		DIA	= diameter of drill (inch)

• WARNING Tool failure can cause serious injury. To prevent:

- When using holders without support bushing, use a short T-A® holder to establish an initial hole that is a minimum of 2 diameters deep.

- Do not rotate tool holder more than 50 RPM unless it is engaged with the workpiece or fixture.

T-A[®] Recommended Drilling Data | Imperial (inch)

HSS Inserts | Flat Bottom Geometry

					SF	M	
		Hardness	нѕѕ			00	00
ISO	Material	(BHN)	Grade	TiN	TIAIN	TiCN	AM200®
	Free-Machining Steel	100 - 150	HSS	170	250	230	290
	1118, 1215, 12L14, etc.	150 - 200	HSS	155	230	205	265
		200 - 250	HSS	140	210	185	245
	Low-Carbon Steel	85 - 125 125 - 175	HSS HSS	150 140	220 210	195 185	255 245
	1010, 1020, 1025, 1522, 1144, etc.	175 - 225	HSS	140	195	185	245
		225 - 275	HSS	120	185	175	215
	Medium-Carbon Steel	125 - 175	HSS	140	210	185	245
	1030, 1040, 1050, 1527, 1140, 1151, etc.	175 - 225	HSS	130	195	175	225
		225 - 275	HSS	120	185	155	215
		275 - 325	SC	110	175	150	205
Р	Alloy Steel	125 - 175	HSS	130	185	175	215
	4140, 5140, 8640, etc.	175 - 225	HSS	120	175	155	205
		225 - 275	HSS	110	155	145	180
		275 - 325	SC C	105	145	135	170
		325 - 375	SC C	95	135	125	155
	High-Strength Alloy	225 - 300	SC SC	70 50	95	85 70	110 90
	4340, 4330V, 300M, etc.	300 - 350 350 - 400	SC SC	45	75 65	60	90 75
	Structural Steel	100 - 150	HSS	120	170	155	195
	A36, A285, A516, etc.	150 - 250	HSS	105	145	135	135
	A30, A203, A310, Ctt.	250 - 350	SC	85	145	110	140
	Tool Steel	150 - 200	SC	70	95	90	110
	H-13, H-21, A-4, 0-2, S-3, etc.	200 - 250	SC	50	80	75	95
		4.40	66	25	25	20	40
	High-Temp Alloy Hastelloy B, Inconel 600, etc.	140 - 220	SC SC	25 20	35 30	30 25	40 35
	Titanium Alloy	220 - 310 140 - 220	SC	35	45	40	50
S	Intallium Alloy	220 - 310	SC	26	40	35	45
	Aerospace Alloy	185 - 275	SC	65	90	85	110
	S82	275 - 350	SC	50	80	70	90
		105 075			22	05	110
	Stainless Steel 400 Series	185 - 275	SC	65	90	85	110
	416, 420, etc. Stainless Steel 300 Series	275 - 350	SC SC	50 65	80 90	70 85	90 110
Μ	304, 316, 17-4PH, etc.	135 - 185 185 - 275	SC	50	80	70	90
	Super Duplex Stainless Steel	135 - 185	SC	65	90	85	110
		185 - 275	SC	50	80	70	90
				1			
	Wear Plate	400	SC SC		_	_	-
н	Hardox [®] , AR400, T-1, etc.	500 600	SC N/A		_		
п	Hardened Steel	300 - 400	SC	45	65	60	80
		400 - 500	SC	25	40	35	45
		T	1	, T	l	1	
	Nodular, Grey, Ductile Cast Iron	120 - 150	HSS	150	220	195	255
K.		150 - 200	HSS	130	195	175	225
К		200 - 220 220 - 260	HSS SC	110 95	175 150	150 125	205 175
		260 - 320	SC	80	150	125	1/5
		1		1			140
	Cast Aluminum	30	HSS	520	750	650	-
		180	HSS	260	400	350	-
	Wrought Aluminum	30	HSS	520	750	650	850
Ν	Aluminum Bronze	180	HSS	260	400	350	450
	Aluminum bronze	100 - 200	SC SC	130 95	190	175 125	230 165
	Brass	200 - 250 100	HSS	150	150 220	125	250
	Copper	60	SC	115	150	130	170
				1 110	150	1	170

* Contact our Application Engineering department for assistance when machining these materials

	I	Feed Rate (IPF	R) by Diameter	r I	
3/8" - 1/2"	33/64" - 11/16"	45/64" - 15/16"	31/32" - 1-3/8"	1-13/32" - 1-7/8"	1-29/32" - 2-9/16"
0.006	0.009	0.011	0.014	0.016	0.018
0.006	0.009	0.011	0.014	0.016	0.018
0.005	0.009	0.011	0.014	0.015	0.017
0.005 🛠	0.008	0.010	0.013	0.015	0.017
0.005 �	0.008	0.010	0.013	0.015	0.016
0.004 *	0.007	0.009	0.012	0.014	0.016
0.004 *	0.007	0.009	0.012	0.014	0.015
0.005	0.008	0.010	0.013	0.015	0.018
0.004	0.007	0.009	0.012	0.014	0.017
0.004	0.007	0.009	0.012	0.014	0.017
0.004	0.007	0.009	0.010	0.013	0.015
0.003	0.007	0.009	0.012	0.013	0.016
0.004	0.006	0.009	0.012	0.013	0.016
0.004	0.005	0.008	0.010	0.012	0.015
0.003	0.005	0.008	0.010	0.012	0.014
0.004 🛠	0.006	0.008	0.009	0.010	0.012
0.003 🛠	0.006	0.008	0.009	0.010	0.012
0.003 🛠	0.005	0.007	0.008	0.009	0.011
0.005 🍫	0.009	0.010	0.012	0.015	0.017
0.004 �	0.008	0.009	0.010	0.013	0.016
0.004 🛠	0.007	0.008	0.009	0.012	0.015
0.004	0.005	0.007	0.009	0.010	0.012
0.004	0.005	0.007	0.009	0.009	0.011
0.003 🛠	0.006	0.007	0.009	0.010	0.012
0.003 🛠	0.005	0.006	0.007	0.008	0.010
0.003 🛠	0.006	0.007	0.009	0.010	0.012
0.003 🛠	0.005	0.006	0.007	0.008	0.010
0.005 🛠	0.007	0.008	0.010	0.012	0.015
0.004 🛠	0.006	0.007	0.009	0.010	0.012
0.005 🛠	0.007	0.008	0.010	0.012	0.014
0.004 �	0.006	0.007	0.009	0.010	0.011
0.005 �	0.007	0.008	0.010	0.012	0.014
0.004 �	0.006	0.007	0.009	0.010	0.011
0.005 🛠	0.007	0.008	0.010	0.012	0.014
0.004 🛠	0.006	0.007	0.009	0.010	0.011
				1	
			_	_	
_	_	_	_	_	_
0.003 �	0.005	0.007	0.008	0.011	0.015
0.002 🛠	0.004	0.006	0.007	0.009	0.011
0.007	0.010	0.010	0.020	0.024	0.027
0.007	0.012	0.016	0.020	0.024	0.027
0.006	0.011 0.009	0.014	0.018	0.022	0.025
0.005	0.009	0.012	0.010	0.018	0.021
0.003	0.007	0.003	0.012	0.014	0.017
				1	
0.007	0.011	0.014	0.017	0.018	0.019
0.007	0.011	0.014	0.016	0.017	0.019
0.007	0.011	0.014	0.017	0.018	0.019
0.007	0.011	0.014	0.016	0.017	0.019
0.005	0.009	0.012	0.016	0.020	0.024 0.015
0.004	0.008	0.008	0.010	0.012	0.015
0.000	0.003	0.004	0.017	0.021	0.023
		2.300			

Deep Hole Drilling Speed and Feed Adjustment

		Â	Holder Len	gth	
	Extended	Long	Long Plus	XL	3XL
Speed	0.90	0.85	0.80	0.80	0.75
Feed	-	0.95	0.90	0.90	0.90

Recommended Speed and Feed Example

If the recommended speed and feed is 200 SFM and 0.008 IPR for a standard length holder, then the speed and feed using a 3XL holder in the same application would be 150 SFM and 0.007 IPR.

200 • 0.75 = 150 SFM	0.008 • 0.90 = 0.007 IPR

Form	ulas	
1.	RPM	= (3.82 • SFM) / DIA
	where:	
	RPM	= revolutions per minute (rev/min)
	SFM	= speed (ft/min)
	DIA	= diameter of drill (inch)
2.	IPM	= RPM • IPR
	where:	
	IPM	= inches per minute (in/min)
	RPM	= revolutions per minute (rev/min)
	IPR	= feed rate (in/rev)
3.	SFM	= RPM • 0.262 • DIA
	where:	
	SFM	= speed (ft/min)
	RPM	= revolutions per minute (rev/min)
	DIA	= diameter of drill (inch)

A WARNING Tool failure can cause serious injury. To prevent:

- When using holders without support bushing, use a short T-A® holder to establish an initial hole that is a minimum of 2 diameters deep.

- Do not rotate tool holder more than 50 RPM unless it is engaged with the workpiece or fixture.

T-A[®] Recommended Drilling Data | Imperial (inch)

Carbide Inserts | Flat Bottom Geometry

										Feed Rate (IPR) by Diameter				
F	Matarial	Hardness (BHN)	Carbide Grade	TiN	TiAIN	TiCN	AM200 ®	3/8" - 1/2"	33/64" - 11/16"	45/64" -	31/32" -			
		. ,								15/16"	1-7/8"			
1	Free-Machining Steel	100 - 150	C2	270	380	325	425	0.007	0.010	0.013	0.015			
	1118, 1215, 12L14, etc.	150 - 200	C2	240	320	280	375	0.006	0.009	0.012	0.014			
		200 - 250	C2	220	300	260	350	0.005	0.009	0.011	0.013			
	Low-Carbon Steel	85 - 125	C2	260	345	315	410	0.007 🛠	0.009	0.011	0.014			
	1010, 1020, 1025, 1522,	125 - 175	C2	220	300	260	350	0.006 �	0.009	0.011	0.014			
1	1144, etc.	175 - 225	C2	200	280	235	320	0.005 🛠	0.008	0.010	0.013			
-		225 - 275	C2	180	240	215	285	0.004 🛠	0.008	0.010	0.013			
	Medium-Carbon Steel	125 - 175	C2	220	300	260	350	0.006	0.009	0.011	0.014			
1	1030, 1040, 1050, 1527,	175 - 225	C2	200	280	240	320	0.005	0.008	0.010	0.013			
1	1140, 1151, etc.	225 - 275	C2	180	240	210	285	0.005	0.008	0.010	0.013			
_		275 - 325	C2	150	210	180	240	0.004	0.007	0.009	0.012			
P 4	Alloy Steel	125 - 175	C2	215	290	250	340	0.006	0.009	0.011	0.014			
4	4140, 5140, 8640, etc.	175 - 225	C2	200	270	230	320	0.005	0.008	0.010	0.013			
		225 - 275	C2	180	230	205	290	0.005	0.008	0.010	0.013			
		275 - 325	C2	175	215	190	280	0.004	0.007	0.009	0.012			
		325 - 375	C2	145	190	170	230	0.003	0.006	0.009	0.011			
H	High-Strength Alloy	225 - 300	C2	140	170	160	220	0.005 🛠	0.008	0.009	0.010			
4	4340, 4330V, 300M, etc.	300 - 350	C2	120	160	140	190	0.004 🛠	0.007	0.008	0.009			
		350 - 400	C2	100	145	120	160	0.003 🛠	0.006	0.007	0.009			
9	Structural Steel	100 - 150	C2	205	265	240	325	0.007 🛠	0.009	0.012	0.014			
ļ	A36, A285, A516, etc.	150 - 250	C2	170	215	200	270	0.005 🛠	0.009	0.010	0.012			
		250 - 350	C2	155	200	180	240	0.004 🛠	0.008	0.009	0.010			
1	Tool Steel	150 - 200	C2	140	190	160	220	0.003	0.006	0.008	0.009			
H	H-13, H-21, A-4, 0-2, S-3, etc.	200 - 250	C2	100	150	120	160	0.003	0.006	0.008	0.009			
H	High-Temp Alloy	140 - 220	C2	70	90	80	110	0.003 🛠	0.006	0.008	0.009			
H	Hastelloy B, Inconel 600, etc.	220 - 310	C2	50	70	60	80	0.003 🛠	0.005	0.007	0.009			
1	Titanium Alloy	140 - 220	C2	85	110	90	130	0.003 🛠	0.005	0.006	0.008			
S		220 - 310	C2	70	95	80	100	0.003 🛠	0.004	0.005	0.007			
4	Aerospace Alloy	185 - 275	C2	140	120	165	130	0.006 🛠	0.006	0.010	0.012			
9	\$82	275 - 350	C2	110	90	125	105	0.005 🛠	0.005	0.009	0.010			
9	Stainless Steel 400 Series	185 - 275	C2	140	180	165	210	0.006 🛠	0.008	0.010	0.012			
4	416, 420, etc.	275 - 350	C2	110	140	125	160	0.005 🛠	0.007	0.009	0.010			
	Stainless Steel 300 Series	135 - 185	C2	90	120	110	130	0.005 🛠	0.007	0.008	0.010			
M	304, 316, 17-4PH, etc.	185 - 275	C2	70	90	80	105	0.004 🛠	0.006	0.007	0.009			
	Super Duplex Stainless Steel	135 - 185	C2	70	95	85	110	0.004 🛠	0.006	0.007	0.008			
		185 - 275	C2	55	70	60	85	0.003 🛠	0.005	0.006	0.007			

* Contact our Application Engineering department for assistance when machining these materials

					SF	M		Feed Rate (IPR) by Diameter				
ISO	Material	Hardness (BHN)	Carbide Grade	Tin	TiAIN	TiCN	AM200 ®	3/8" - 1/2"	33/64" - 11/16"	45/64" - 15/16"	31/32" - 1-7/8"	
150	Wear Plate	400	C2	65	100	85	130	0.003 *	0.004	0.006	0.008	
	Hardox [®] , AR400, T-1, etc.	500	C2	45	75	60	100	0.003 🛠	0.004	0.005	0.006	
Н		600	C2	35	65	45	80	0.001 �	0.002	0.004	0.005	
	Hardened Steel	300 - 400	C2	100	125	110	135	0.004 �	0.006	0.007	0.009	
		400 - 500	C2	60	75	65	110	0.003 🛠	0.005	0.006	0.007	
	Nodular, Grey,	120 - 150	C2	270	405	360	450	0.007	0.010	0.013	0.016	
	Ductile Cast Iron	120 - 130	C2 C2	230	350	290	390	0.007	0.010	0.013	0.010	
к	Ductile Cast Iron	200 - 220	C2 C2	200	320	290	350	0.005	0.009	0.011	0.014	
ĸ		200 - 220	C2 C2	180	270	200	300	0.003	0.008	0.010	0.013	
					-	-						
		260 - 320	C2	160	240	200	265	0.004	0.006	0.009	0.009	
	Cast Aluminum	30	C2	520	750	650	-	0.009	0.013	0.016	0.017	
		180	C2	260	400	350	-	0.008	0.012	0.014	0.015	
	Wrought Aluminum	30	C2	950	1200	1070	1270	0.005	0.007	0.009	0.010	
		180	C2	630	800	715	850	0.004	0.006	0.008	0.009	
Ν	Aluminum Bronze	100 - 200	C2	240	310	280	340	0.004	0.006	0.008	0.011	
		200 - 250	C2	180	265	220	285	0.003	0.005	0.006	0.008	
	Brass	100	C2	370	520	450	600	0.005	0.006	0.008	0.012	
	Copper	60	C2	220	345	280	380	0.002 🛠	0.002	0.003	0.005	

* Contact our Application Engineering department for assistance when machining these materials

Deep Hole Drilling Speed and Feed Adjustment

		Á	Holder Leng	th	
	Extended	Long	Long Plus	XL	3XL
Speed	0.90	0.85	0.80	0.80	0.75
Feed	-	0.95	0.90	0.90	0.90

Recommended Speed and Feed Example

If the recommended speed and feed is 200 SFM and 0.008 IPR for a standard length holder, then the speed and feed using a 3XL holder in the same application would be 150 SFM and 0.007 IPR.

200 • 0.75 = 150 SFM

0.008 • 0.90 = 0.007 IPR

Formulas

1	RPM	= (3.82 • SFM) / DIA	2.	IPM	= RPM • IPR	3.	SFM	= RPM • 0.262 • DIA
	where:			where:			where:	
	RPM	= revolutions per minute (rev/min)		IPM	= inches per minute (in/min)		SFM	= speed (ft/min)
	SFM	= speed (ft/min)		RPM	= revolutions per minute (rev/min)		RPM	= revolutions per minute (rev/min)
	DIA	= diameter of drill (inch)		IPR	= feed rate (in/rev)		DIA	= diameter of drill (inch)

• WARNING Tool failure can cause serious injury. To prevent:

- When using holders without support bushing, use a short T-A® holder to establish an initial hole that is a minimum of 2 diameters deep.

- Do not rotate tool holder more than 50 RPM unless it is engaged with the workpiece or fixture.

T-A[®] Recommended Drilling Data | Imperial (inch)

Carbide Inserts | Diamond Coating

			SFM		Feed Rate (IPR) by Diameter	
		Carbide	0.				
	Material	Grade	Diamond Coating	3/8" - 1/2"	33/64" - 11/16"	45/64" - 15/16"	31/32" - 1-3/8"
	Carbon (hard)	N2	1000 - 1500	0.004 - 0.006	0.008 - 0.010	0.010 - 0.012	0.012 - 0.014
	Carbon Fiber	N2	1000 - 1500	0.004 - 0.006	0.008 - 0.010	0.010 - 0.012	0.012 - 0.014
Pol	Carbon / Glass Fiber	N2	1000 - 1500	0.004 - 0.006	0.008 - 0.010	0.010 - 0.012	0.012 - 0.014
yme	Fiberglass	N2	1000 - 1500	0.004 - 0.006	0.008 - 0.010	0.010 - 0.012	0.012 - 0.014
r Ma	Graphite	N2	1000 - 1500	0.004 - 0.006	0.008 - 0.010	0.010 - 0.012	0.012 - 0.014
trix	Plastics	N2	250 - 1000	0.004 - 0.006	0.008 - 0.010	0.010 - 0.012	0.012 - 0.014
Com	Epoxy Resin	N2	250 - 1000	0.004 - 0.006	0.008 - 0.010	0.010 - 0.012	0.012 - 0.014
Polymer Matrix Composites	Bismaleimide Resin	N2	250 - 1000	0.004 - 0.006	0.008 - 0.010	0.010 - 0.012	0.012 - 0.014
tes	Polyester Resin	N2	250 - 1000	0.004 - 0.006	0.008 - 0.010	0.010 - 0.012	0.012 - 0.014
	Phenolic Resin	N2	250 - 1000	0.004 - 0.006	0.008 - 0.010	0.010 - 0.012	0.012 - 0.014
	Rubber	N2	250 - 1000	0.004 - 0.006	0.008 - 0.010	0.010 - 0.012	0.012 - 0.014
	Aluminum	N2	1000	0.008	0.013	0.016	0.020
	Si < 10%	N2	1000	0.008	0.013	0.016	0.020
	10% < Si < 15%	N2	850 - 1000	0.008	0.013	0.016	0.020
2	15% < SI < 20%	N2	650 - 850	0.008	0.013	0.016	0.020
Metal Matrix Composites	20% < Si < 25%	N2	500 - 650	0.008	0.013	0.016	0.020
Mat	25% < Si	N2	200 - 500	0.008	0.013	0.016	0.020
rix C	Brass	N2	250 - 500	0.008	0.013	0.016	0.020
omp	Bronze	N2	250 - 500	0.008	0.013	0.016	0.020
osit	Copper	N2	100 - 250	0.004 - 0.006	0.008 - 0.010	0.010 - 0.012	0.012 - 0.014
Sa	Copper Alloys	N2	100 - 250	0.004 - 0.006	0.008 - 0.010	0.010 - 0.012	0.012 - 0.014
	Lead Alloys	N2	100 - 250	0.004 - 0.006	0.008 - 0.010	0.010 - 0.012	0.012 - 0.014
	Magnesium Alloys	N2	100 - 250	0.004 - 0.006	0.008 - 0.010	0.010 - 0.012	0.012 - 0.014
	Precious Metals	N2	100 - 250	0.004 - 0.006	0.008 - 0.010	0.010 - 0.012	0.012 - 0.014
	Carbide (green)	N2	50 - 250	0.004 - 0.006	0.008 - 0.010	0.010 - 0.012	0.012 - 0.014
Ceramic Matrix Composites	Ceramic (green)	N2	50 - 250	0.004 - 0.006	0.008 - 0.010	0.010 - 0.012	0.012 - 0.014
nic ix sites	Ceramic (pre-sintered)	N2	50 - 250	0.004 - 0.006	0.008 - 0.010	0.010 - 0.012	0.012 - 0.014

Deep Hole Drilling Speed and Feed Adjustment

		Â	Holder Lengt	th	
	Extended	Long	Long Plus	XL	3XL
Speed	0.90	0.85	0.80	0.80	0.75
Feed	-	0.95	0.90	0.90	0.90

Recommended Speed and Feed Example

If the recommended speed and feed is 200 SFM and 0.008 IPR for a standard length holder, then the speed and feed using a 3XL holder in the same application would be 150 SFM and 0.007 IPR.

200 • 0.75 = 150 SFM

0.008 • 0.90 = 0.007 IPR

A WARNING Tool failure can cause serious injury. To prevent:

- When using holders without support bushing, use a short T-A® holder to establish an initial hole that is a minimum of 2 diameters deep.

- Do not rotate tool holder more than 50 RPM unless it is engaged with the workpiece or fixture.

Visit www.alliedmachine.com/DeepHoleGuidelines for the most up-to-date information and procedures. Factory technical assistance is available for your specific applications through our Application Engineering Team.

Notes

_			 		 	 		 	 	 		 	
_			 		 								
_		 	 		 	 		 	 	 		 	

Coolant Recommendations | Imperial (inch)

HSS Drill Inserts

		Pressure or		33/64" -					
ISO	Material	Flow Rate	3/8" - 1/2"	11/16"	23/32" - 1"	1" - 1-1/4"	1-1/4" - 2"	2" - 3"	3" - 4"
	Free-Machining Steel	PSI	175 - 185	100 - 120	105 - 140	80 - 115	75 - 100	40 - 50	65 - 90
	1118, 1215, 12L14, etc.	GPM	2.5 - 2.6	2.8 - 3.0	4.4 - 5.2	7 - 8	12 - 14	30 - 33	38 - 44
	Low-Carbon Steel	PSI	165 - 170	75 - 90	75 - 95	60 - 80	55 - 75	30 - 40	50 - 65
	1010, 1020, 1025, 1522, 1144, etc.	GPM	2.4 - 2.5	2.4 - 2.6	3.7 - 4.2	6 - 7	11 - 12	26 - 30	33 - 38
	Medium-Carbon Steel	PSI	160 - 165	70 - 85	70 - 90	55 - 75	50 - 70	30 - 40	50 - 65
	1030, 1040, 1050, 1527, 1140, 1151, etc.	GPM	2.3 - 2.4	2.3 - 2.6	3.7 - 4.2	5 - 6	10 - 12	26 - 30	33 - 38
Р	Alloy Steel	PSI	160 - 165	65 - 75	65 - 80	50 - 70	45 - 60	30 - 35	40 - 50
	4140, 5140, 8640, etc.	GPM	2.3 - 2.4	2.2 - 2.4	3.5 - 3.9	5 - 6	10 - 11	26 - 28	30 - 33
	High-Strength Alloy	PSI	150 - 155	55 - 60	45 - 50	25 - 30	25 - 30	20 - 25	40 - 50
	4340, 4330V, 300M, etc.	GPM	2.3 - 2.4	2.1 - 2.2	2.9 - 3.1	4 - 5	7 - 8	21 - 23	23 - 26
	Structural Steel	PSI	160 - 165	75 - 85	65 - 80	40 - 55	40 - 50	25 - 30	40 - 50
	A36, A285, A516, etc.	GPM	2.3 - 2.4	2.4 - 2.6	3.5 - 3.9	5-6	9 - 10	23 - 26	30 - 33
	Tool Steel	PSI	150 - 155	55 - 60	45 - 50	25 - 30	25 - 30	20 - 25	25 - 30
	H-13, H-21, A-4, 0-2, S-3, etc.	GPM	2.3 - 2.4	2.1 - 2.2	2.9 - 3.1	4 - 5	7 - 8	21 - 23	23 - 26
	High-Temp Alloy	PSI	150 - 155	60 - 65	50 - 55	30 - 35	25 - 30	25 - 30	44
	Hastelloy B, Inconel 600, etc.	GPM	2.3 - 2.4	2.2 - 2.3	3.1 - 3.2	4 - 5	7 - 8	23 - 26	33
	Titanium Alloy	PSI	150 - 155	60 - 65	50 - 55	30 - 35	25 - 30	25 - 30	44
S	-	GPM	2.3 - 2.4	2.2 - 2.3	3.1 - 3.2	4 - 5	7 - 8	23 - 26	33
	Aerospace Alloy	PSI	150 - 155	60 - 65	50 - 55	30 - 35	25 - 30	25 - 30	44
	S82	GPM	2.3 - 2.4	2.2 - 2.3	3.1 - 3.2	4 - 5	7 - 8	23 - 26	33
	Stainless Steel 400 Series	PSI	171	96	75	55	F1	29	45
	416, 420, etc.	GPM	171 3	86	4	6	51 10	29	31
	Stainless Steel 300 Series	PSI	171	86	75	55	51	20	45
Μ	304, 316, 17-4PH, etc.	GPM	3	3	4	6	10	29	31
	Super Duplex Stainless Steel	PSI	171	86	75	55	51	20	45
	Super Duplex Stalliess Steel	GPM	3	3	4	6	10	25	31
			5		4	0	10	20	51
	Wear Plate	PSI	155	61	51	29	29	25	29
н	Hardox [®] , AR400, T-1, etc.	GPM	2	2	3	5	8	23	26
	Hardened Steel	PSI	155	61	51	29	29	25	29
		GPM	2	2	3	5	8	23	26
	SG / Nodular Cast Iron	PSI	160	65	61	41	35	29	35
		GPM	2	2	3	5	9	25	28
K	Grey / White Iron	PSI	160	65	61	41	35	29	35
		GPM	2	2	3	5	9	26	28
						1	-	1	
	Cast Aluminum	PSI	210	180	230	159	125	51	80
		GPM	3	4	6	9	16	33	42
	Wrought Aluminum	PSI	210	180	230	159	125	51	80
		GPM	3	4	6	9	16	33	42
N	Aluminum Bronze	PSI	186	120	140	115	100	51	90
		GPM	2.5	3	5	8	14	33	44
	Brass	PSI	159	65	61	41	35	29	35
		GPM	2	2	3	5	9	26	28
	Copper	PSI	186	120	140	115	100	51	90
		GPM	2.5	3	5	8	14	33	44

Deep Hole Drilling Coolant Adjustment

	A Holder Length								
	Extended	Long	Long Plus	XL	3XL				
Pressure and Flow	1.3	1.5	2	2	3				

Recommended Coolant Example

150 • 3 = 450 PSI

If the recommended pressure and flow is 150 PSI and 2.4 GPM for a standard length holder, then the adjusted pressure and flow for a 3XL holder would be 450 PSI and 7.2 GPM.

2.4 • 3 = 7.2 GPM

A WARNING Tool failure can cause serious injury. To prevent:

- When using holders without support bushing, use a short T-A® holder to establish an initial hole that is a minimum of 2 diameters deep.

- Do not rotate tool holder more than 50 RPM unless it is engaged with the workpiece or fixture.

Visit www.alliedmachine.com/DeepHoleGuidelines for the most up-to-date information and procedures. Factory technical assistance is available for your specific applications through our Application Engineering Team.

IMPORTANT: The coolant pressure and flow rate recommendations above represent a good approximation to obtain optimum tool life and chip evacuation at Allied Machine recommended speeds and feeds. If lower coolant capabilities exist in a drilling application, the T-A[®] drilling system will still function at reduced penetration rates. Contact our Application Engineering department for a more specific recommendation of coolant requirements and/or speeds and feeds.

Coolant Recommendations | Imperial (inch)

Carbide Drill Inserts

		Pressure or					1-13/32" -
ISO	Material	Flow Rate	3/8" - 1/2"	33/64" - 11/16"	23/32" - 1"	1" - 1-3/8"	1-7/8"
	Free-Machining Steel	PSI	195	140	160	140	155
	1118, 1215, 12L14, etc.	GPM	2.6	3.3	5.5	9	18
	Low-Carbon Steel	PSI	180	105	105	110	115
	1010, 1020, 1025, 1522, 1144, etc.	GPM	2.5	2.9	4.4	8	15
	Medium-Carbon Steel	PSI	175	100	90	70	75
	1030, 1040, 1050, 1527, 1140, 1151, etc.	GPM	2.5	2.8	4.1	7	13
Р	Alloy Steel	PSI	165	85	100	75	70
	4140, 5140, 8640, etc.	GPM	2.4	2.6	4.3	6	12
	High-Strength Alloy	PSI	175	115	105	75	70
	4340, 4330V, 300M, etc.	GPM	2.4	2.3	3.2	5	8
	Structural Steel	PSI	175	115	105	75	70
	A36, A285, A516, etc.	GPM	2.5	3.0	4.4	6	12
	Tool Steel	PSI	155	60	55	40	35
	H-13, H-21, A-4, 0-2, S-3, etc.	GPM	2.4	2.2	3.2	5	8
	High-Temp Alloy	PSI	247	160	174	160	130
	Hastelloy B, Inconel 600, etc.	GPM	3	4	6	9	16
s	Titanium Alloy	PSI	247	160	174	160	130
5		GPM	3	4	6	9	16
	Aerospace Alloy	PSI	247	160	174	160	130
	S82	GPM	3	4	6	9	16
	Stainless Steel 400 Series	PSI	329	239	260	250	190
	416, 420, etc.	GPM	3	4	7	12	20
	Stainless Steel 300 Series	PSI	329	239	260	250	190
Μ	304, 316, 17-4PH, etc.	GPM	3	4	7	12	20
	Super Duplex Stainless Steel	PSI	329	239	260	250	190
		GPM	3	4	7	12	20
	Weer Dista	DCI	210	75	70	40	45
	Wear Plate	PSI	210	75	70 4	49 5	45
Н	Hardox [®] , AR400, T-1, etc. Hardened Steel	GPM PSI	3 210	2 75	70	49	45
	Hardened Steel	GPM	3	2	4	5	10
				2	4		10
	SG / Nodular Cast Iron	PSI	225	104	90	90	80
к		GPM	3	3	4	7	13
	Grey / White Iron	PSI	225	104	90	90	80
		GPM	3	3	4	7	13
	Cast Aluminum	PSI	350	319	315	284	200
		GPM	4	5	8	12	200
	Wrought Aluminum	PSI	350	319	315	284	200
	-	GPM	4	5	8	12	20
	Aluminum Bronze	PSI	290	239	239	220	174
Ν		GPM	3	4	7	11	19
	Brass	PSI	350	319	315	284	200
		GPM	4	5	7	12	20
	Copper	PSI	290	239	239	220	174
		GPM	3	4	7	11	19

Deep Hole Drilling Coolant Adjustment

		🛓 Holder Length								
	Extended	Long	Long Plus	XL	3XL					
Pressure and Flow	1.3	1.5	2	2	3					

Recommended Coolant Example

150 • 3 = 450 PSI

If the recommended pressure and flow is 150 PSI and 2.4 GPM for a standard length holder, then the adjusted pressure and flow for a 3XL holder would be 450 PSI and 7.2 GPM.

2.4 • 3 = 7.2 GPM

• WARNING Tool failure can cause serious injury. To prevent:

- When using holders without support bushing, use a short T-A® holder to establish an initial hole that is a minimum of 2 diameters deep.

- Do not rotate tool holder more than 50 RPM unless it is engaged with the workpiece or fixture.

Visit www.alliedmachine.com/DeepHoleGuidelines for the most up-to-date information and procedures. Factory technical assistance is available for your specific applications through our Application Engineering Team.

IMPORTANT: The coolant pressure and flow rate recommendations above represent a good approximation to obtain optimum tool life and chip evacuation at Allied Machine recommended speeds and feeds. If lower coolant capabilities exist in a drilling application, the T-A® drilling system will still function at reduced penetration rates. Contact our Application Engineering department for a more specific recommendation of coolant requirements and/or speeds and feeds.

GEN2 T-A[®] Recommended Drilling Data | Metric (mm)

HSS Inserts

				M/	min	Feed Rate (mm/rev) by Diameter		
ISO	Material	Hardness (BHN)	HSS Grade	TiN	AM200®	9.50 mm - 12.95 mm	12.98 mm - 17.52 mm	
	Free-Machining Steel	100 - 150	HSS	61	99	0.20	0.30	
	1118, 1215, 12L14, etc.	150 - 200	HSS	55	91	0.18	0.28	
		200 - 250	HSS	49	85	0.15	0.25	
	Low-Carbon Steel	85 - 125	HSS	52	88	0.20 🛠	0.25	
	1010, 1020, 1025, 1522, 1144, etc.	125 - 175	HSS	49	83	0.18 🛠	0.25	
		175 - 225	HSS	46	79	0.15 🛠	0.23	
		225 - 275	HSS	43	73	0.13 🛠	0.23	
	Medium-Carbon Steel	125 - 175	HSS	49	83	0.18	0.25	
	1030, 1040, 1050, 1527, 1140, 1151, etc.	175 - 225	HSS	46	79	0.15	0.23	
		225 - 275	HSS	43	73	0.15	0.23	
	Allow Steel	275 - 325	SC, PC	40	68	0.13	0.20	
Ρ	Alloy Steel	125 - 175	HSS	46	73	0.18	0.25	
	4140, 5140, 8640, etc.	175 - 225	HSS	43 40	68 64	0.15	0.23	
		225 - 275 275 - 325		37	59	0.15	0.23	
			SC, PC SC, PC	37	59	0.13	0.20	
	High-Strength Alloy	325 - 375	, · · · · · · · · · · · · · · · · · · ·	1		0.10	0.18	
	0 0 1	225 - 300	SC, PC	24	38	0.15 *	0.23	
	4340, 4330V, 300M, etc.	300 - 350	SC, PC	18	30	0.13 *	0.20	
	Chrysterial Steel	350 - 400	PC	15	24	0.10 🛠	0.18	
	Structural Steel	100 - 150	HSS	43		0.20 *	0.28	
	A36, A285, A516, etc.	150 - 250	HSS	37	57 48	0.15 🛠	0.25	
	Tool Stool	250 - 350 150 - 200	SC, PC	30	-	0.13 🛠	0.23	
	Tool Steel		SC SC DC	24	38	0.10	0.18	
	H-13, H-21, A-4, 0-2, S-3, etc.	200 - 250	SC, PC	18	32	0.10	0.18	
	High-Temp Alloy	140 - 220	SC, PC	9	13	0.10 🛠	0.18	
	Hastelloy B, Inconel 600, etc.	220 - 310	PC	8	12	0.10 🛠	0.15	
S	Titanium Alloy	140 - 220	SC, PC	11	16	0.10 🛠	0.18	
5		220 - 310	PC	10	15	0.08 🛠	0.15	
	Aerospace Alloy	185 - 275	SC, PC	23	35	0.15 🛠	0.20	
	S82	275 - 350	SC, PC	18	31	0.13 🛠	0.18	
_	Stainless Steel 400 Series	185 - 275	SC, PC	23	35	0.15 🛠	0.20	
	416, 420, etc.	275 - 350	SC, PC	18	31	0.13 🛠	0.18	
	Stainless Steel 300 Series	135 - 185	SC, PC	23	35	0.08 �	0.18	
Μ	304, 316, 17-4PH, etc.	185 - 275	SC, PC	18	31	0.08 🛠	0.15	
	Super Duplex Stainless Steel	135 - 185	SC, PC	18	26	0.08 🛠	0.13	
	Super Duplex Stalliess Steel	185 - 275	SC, PC	15	20	0.08 *	0.15	
		185-275	30,10	15	22	0:08 ¥	0.15	
	Wear Plate	400	SC, PC	14	21	0.08 🛠	0.15	
	Hardox [®] , AR400, T-1, etc.	500	PC	10	14	0.05 🛠	0.12	
Н		600	N/A	-	-	-	-	
	Hardened Steel	300 - 400	PC	15	29	0.10 🛠	0.15	
		400 - 500	PC	10	14	0.06 🛠	0.12	
	Nodular, Grey, Ductile Cast Iron	120 - 150	HSS	52	84	0.20	0.30	
	Nouvial, Grey, Ductile Cast IIOII	150 - 200	HSS	46	79	0.18	0.28	
к		200 - 220	HSS	40	68	0.18	0.28	
N		220 - 220	SC, PC	34	57	0.13	0.23	
		260 - 320	SC, PC	27	47	0.13	0.18	
				1	1		Ĭ	
	Cast Aluminum	30	HSS	183	-	0.23	0.38	
		180	HSS	91	-	0.20	0.33	
	Wrought Aluminum	30	HSS	183	280	0.12	0.33	
Ν		180	HSS	91	200	0.12	0.18	
	Aluminum Bronze	100 - 200	SC	52	82	0.15	0.24	
		200 - 250	SC	40	65	0.12	0.18	
	Brass	100	HSS	91	144	0.18	0.27	
	Copper	60	SC	40	58	0.07 🛠	0.10	

* Contact our Application Engineering department for assistance when machining these materials

	Feed Rate (mm/rev) by Diameter										
17.53 mm - 24.38 mm	24.41 mm - 35.00 mm	35.01 mm - 47.80 mm	47.85 mm - 65.99 mm	66.00 mm - 114.48 mm							
0.41	0.48	0.51	0.58	0.71							
0.38	0.43	0.51	0.58	0.71							
0.36	0.41	0.51	0.58	0.71							
0.36	0.46	0.48	0.58	0.69							
0.36	0.43	0.48	0.58	0.69							
0.33	0.41	0.46	0.53	0.61							
0.33	0.41	0.46	0.53	0.61							
0.36	0.43	0.48	0.58	0.69							
0.33	0.41	0.46	0.53	0.61							
0.33	0.41	0.46	0.53	0.61							
0.30	0.38	0.41	0.48	0.56							
0.36	0.43	0.43	0.48	0.56							
0.33	0.41	0.43	0.48	0.56							
0.33	0.41	0.43	0.48	0.56							
0.30	0.38	0.38	0.43	0.51							
0.28	0.36	0.38	0.43	0.51							
0.28	0.33	0.36	0.43	0.51							
0.25	0.30	0.36	0.43	0.51							
0.23	0.28	0.30	0.41	0.46							
0.38	0.43	0.46	0.53	0.66							
0.33	0.38	0.41	0.48	0.61							
0.30	0.33	0.36	0.43	0.51							
0.25	0.30	0.30	0.38	0.43							
0.25	0.30	0.30	0.38	0.43							
0.23	0.28	0.30	0.38	-							
0.20	0.25	0.25	0.30	-							
0.21	0.27	0.30	0.38	-							
0.18	0.23	0.25	0.30								
0.23	0.28	0.36	0.41	0.51							
0.20	0.25	0.30	0.36	0.46							
0.23	0.28	0.36	0.41	0.51							
0.20	0.25	0.30	0.36	0.46							
0.20	0.28	0.36	0.41	0.51							
0.18	0.25	0.30	0.36	0.46							
0.20	0.28	0.36	0.41	0.51							
0.18	0.25	0.30	0.36	0.46							
0.20	0.22	0.20	0.41	0.46							
0.20	0.23	0.30	0.41	0.46							
0.18	0.20	0.25	0.30	0.40							
0.23	0.27	0.30	0.41	0.46							
0.18	0.24	0.25	0.30	0.40							
	1										
0.41	0.51	0.61	0.69	0.76							
0.38	0.48	0.56	0.64	0.71							
0.33	0.43	0.46	0.53	0.61							
0.28	0.36	0.36	0.43	0.51							
0.25	0.28	0.28	0.36	0.41							
0.46	0.58	0.56	0.64	0.64							
0.40	0.50	0.56	0.64	0.64							
0.40	0.50	0.56	0.64	0.64							
0.30	0.35	0.56	0.64	0.64							
0.30	0.38	0.43	0.48	0.53							
0.23	0.28	0.36	0.40	0.46							
0.33	0.45	0.47	0.53	0.58							
0.18	0.26	0.23	0.27	0.31							

Deep Hole Drilling Speed and Feed Adjustment

		Å	Holder Leng	gth	
	Extended	Long	Long Plus	XL	3XL
Speed	0.90	0.85	0.80	0.80	0.75
Feed	-	0.95	0.90	0.90	0.90

Recommended Speed and Feed Example

F

If the recommended speed and feed is 50 M/min and 0.20 mm/ rev for a standard length holder, then the speed and feed using a 3XL holder in the same application would be 37.5 M/min and 0.18 mm/rev.

Form	ulas	
1.	RPM	= (318.47 • M/min) / DIA
	where:	
	RPM	= revolutions per minute (rev/min)
	M/min	= speed (M/min)
	DIA	= diameter of drill (mm)
2.	mm/min	= RPM • mm/rev
	where:	
	mm/min	= mm per minute (mm/min)
	RPM	= revolutions per minute (rev/min)
	mm/rev	= feed rate (mm/rev)
3.	M/min	= RPM • 0.003 • DIA
	where:	
	M/min	= speed (M/min)
	RPM	= revolutions per minute (rev/min)
	DIA	= diameter of drill (mm)

A WARNING Tool failure can cause serious injury. To prevent:

- When using holders without support bushing, use a short T-A[®] holder to establish an initial hole that is a minimum of 2 diameters deep.

- Do not rotate tool holder more than 50 RPM unless it is engaged with the workpiece or fixture.

GEN2 T-A[®] Recommended Drilling Data | Metric (mm)

Carbide Inserts

				M/min	Feed Rate (mm/rev) by Diameter			
ISO	Material	Hardness (BHN)	Carbide Grade	AM300®	9.50 mm - 12.95 mm	12.98 mm - 17.53 mm	17.54 mm - 24.38 mm	24.41 mm - 35.00 mm
	Free-Machining Steel	100 - 150	C1	146	0.20	0.30	0.41	0.48
	1118, 1215, 12L14, etc.	150 - 200	C1	126	0.18	0.28	0.38	0.43
		200 - 250	C1	119	0.15	0.25	0.36	0.41
	Low-Carbon Steel	85 - 125	C1	137	0.20 🛠	0.25	0.36	0.46
	1010, 1020, 1025, 1522,	125 - 175	C1	119	0.18 🛠	0.25	0.36	0.43
	1144, etc.	175 - 225	C1	108	0.15 🛠	0.23	0.33	0.41
		225 - 275	C1	95	0.13 🛠	0.23	0.33	0.41
	Medium-Carbon Steel	125 - 175	C1	119	0.18	0.25	0.36	0.43
	1030, 1040, 1050, 1527,	175 - 225	C1	108	0.15	0.23	0.33	0.41
	1140, 1151, etc.	225 - 275	C1	95	0.15	0.23	0.33	0.41
		275 - 325	C1	80	0.13	0.20	0.30	0.38
	Alloy Steel	125 - 175	C1	115	0.18	0.25	0.36	0.43
Ρ	4140, 5140, 8640, etc.	175 - 225	C1	105	0.15	0.23	0.33	0.43
		225 - 275	C1	95	0.15	0.23	0.33	0.41
		275 - 325	C1	87	0.13	0.20	0.30	0.38
		325 - 375	C1	78	0.10	0.18	0.28	0.36
	High-Strength Alloy	225 - 300	C1	70	0.15 🛠	0.23	0.28	0.33
	4340, 4330V, 300M, etc.	300 - 350	C1	63	0.13 🛠	0.20	0.25	0.30
		350 - 400	C1	56	0.10 🛠	0.18	0.23	0.28
	Structural Steel	100 - 150	C1	108	0.20 🛠	0.28	0.38	0.43
	A36, A285, A516, etc.	150 - 250	C1	87	0.15 🛠	0.25	0.33	0.38
		250 - 350	C1	80	0.13 🛠	0.23	0.30	0.33
	Tool Steel	150 - 200	C1	78	0.10	0.18	0.25	0.30
	H-13, H-21, A-4, 0-2, S-3, etc.	200 - 250	C1	59	0.10	0.18	0.25	0.30
	High-Temp Alloy	140 - 220	C2	37	0.10 🛠	0.18	0.23	0.28
	Hastelloy B, Inconel 600, etc.	220 - 310	C2	29	0.10 🛠	0.15	0.20	0.25
s	Titanium Alloy	140 - 220	C2	42	0.10 🛠	0.18	0.21	0.27
5		220 - 310	C2	33	0.08 🛠	0.15	0.18	0.23
	Aerospace Alloy	185 - 275	C2	73	0.12 🛠	0.16	0.18	0.22
	S82	275 - 350	C2	56	0.10 🛠	0.14	0.16	0.19
	Stainless Steel 400 Series	185 - 275	C2	73	0.18 🛠	0.23	0.30	0.36
	416, 420, etc.	275 - 350	C2	56	0.15 🛠	0.20	0.28	0.30
м	Stainless Steel 300 Series	135 - 185	C2	73	0.14 🛠	0.18	0.24	0.29
IVI	304, 316, 17-4PH, etc.	185 - 275	C2	56	0.12 🛠	0.16	0.22	0.24
	Super Duplex Stainless Steel	135 - 185	C2	38	0.12 🛠	0.17	0.22	0.26
		185 - 275	C2	30	0.10 🛠	0.15	0.18	0.22

* Contact our Application Engineering department for assistance when machining these materials

				M/min	Feed Rate (mm/rev) by Diameter				
ISO	Material	Hardness (BHN)	Carbide Grade	AM300®	9.50 mm - 12.95 mm	12.98 mm - 17.53 mm	17.54 mm - 24.38 mm	24.41 mm - 35.00 mm	
	Wear Plate	400	C2	45	0.07 🛠	0.12	0.20	0.25	
	Hardox [®] , AR400, T-1, etc.	500	C2	37	0.05 🛠	0.10	0.15	0.20	
Н		600	C2	30	0.04 🛠	0.08	0.12	0.16	
	Hardened Steel	300 - 400	C1	47	0.10 🛠	0.18	0.23	0.27	
		400 - 500	C1	37	0.06 🛠	0.12	0.18	0.24	
	Nodular, Grey, Ductile Cast Iron	120 - 150 150 - 200	C2 C2	152 146	0.20 0.18	0.30 0.28	0.38 0.33	0.48 0.43	
K		200 - 220	C2	131	0.15	0.23	0.30	0.38	
		220 - 260	C2	113	0.13	0.20	0.28	0.33	
		260 - 320	C2	102	0.13	0.18	0.25	0.28	
	Cast Aluminum	30	C2	300	0.23	0.38	0.46	0.58	
		180	C2	225	0.20	0.33	0.40	0.50	
	Wrought Aluminum	30	C2	426	0.12	0.33	0.40	0.50	
Ν		180	C2	300	0.12	0.18	0.30	0.35	
	Aluminum Bronze	100 - 200	C2	110	0.15	0.24	0.30	0.38	
		200 - 250	C2	90	0.12	0.18	0.23	0.28	
	Brass	100	C2	200	0.18	0.27	0.33	0.45	
	Copper	60	C2	130	0.07 🛠	0.10	0.18	0.26	

* Contact our Application Engineering department for assistance when machining these materials

Deep Hole Drilling Speed and Feed Adjustment

	A Holder Length									
	Extended	Long	Long Plus	XL	3XL					
Speed	0.90	0.85	0.80	0.80	0.75					
Feed	-	0.95	0.90	0.90	0.90					

Recommended Speed and Feed Example

If the recommended speed and feed is 50 M/min and 0.20 mm/rev for a standard length holder, then the speed and feed using a 3XL holder in the same application would be 37.5 M/min and 0.18 mm/rev.

50	0.75 =	37.5	M/min
50	0.75	57.5	

0.20 • 0.90 = 0.18 mm/rev

Formulas

1. RPM	= (318.47 • M/min) / DIA	2. m	nm/min	= RPM • mm/rev	3.	M/min	= RPM • 0.003 • DIA
where	2:	n n	where:			where:	
RPM	= revolutions per minute (rev/min)	m	nm/min	= mm per minute (mm/min)		M/min	= speed (M/min)
M/mi	n = speed (M/min)	R	RPM	= revolutions per minute (rev/min)		RPM	= revolutions per minute (rev/min)
DIA	= diameter of drill (mm)	n	nm/rev	= feed rate (mm/rev)		DIA	= diameter of drill (mm)

• WARNING Tool failure can cause serious injury. To prevent:

- When using holders without support bushing, use a short T-A® holder to establish an initial hole that is a minimum of 2 diameters deep.

- Do not rotate tool holder more than 50 RPM unless it is engaged with the workpiece or fixture.

T-A[®] Recommended Drilling Data | Metric (mm)

HSS Inserts

					M/min		Feed Rate (mm/	rev) by Diameter
ISO	Material	Hardness (BHN)	HSS Grade	Tin	TIAIN	TiCN	9.50 mm - 12.95 mm	12.98 mm - 17.52 mm
130	Free-Machining Steel	100 - 150	HSS	61	85	79	0.18	0.25
	1118, 1215, 12L14, etc.	150 - 200	HSS	55	79	79	0.18	0.25
	1110, 1213, 12211, 000	200 - 250	HSS	49	73	64	0.15	0.25
	Low-Carbon Steel	85 - 125	HSS	52	76	67	0.15 �	0.23
	1010, 1020, 1025, 1522, 1144, etc.	125 - 175	HSS	49	73	64	0.15 🛠	0.23
		175 - 225	HSS	46	69	59	0.13 🛠	0.20
		225 - 275	HSS	43	64	55	0.13 🛠	0.20
	Medium-Carbon Steel	125 - 175	HSS	49	73	64	0.15	0.23
	1030, 1040, 1050, 1527, 1140, 1151, etc.	175 - 225	HSS	46	69	59	0.13	0.20
		225 - 275	HSS	43	64	55	0.13	0.20
		275 - 325	SC, PC	40	59	52	0.10	0.18
Р	Alloy Steel	125 - 175	HSS	46	64	59	0.15	0.20
	4140, 5140, 8640, etc.	175 - 225	HSS HSS	43	59	55 52	0.13	0.20
		225 - 275 275 - 325	SC, PC	40	55	47	0.13	0.18
		325 - 375	SC, PC	34	47	47	0.10	0.15
	High-Strength Alloy	225 - 300	SC, PC	24	34	30	0.13 🛠	0.15
	4340, 4330V, 300M, etc.	300 - 350	SC, PC	18	26	24	0.10 *	0.18
	15 10, 1550 0, 500 00, 610	350 - 400	PC	15	21	20	0.08 *	0.15
	Structural Steel	100 - 150	HSS	43	61	55	0.15 🛠	0.25
	A36, A285, A516, etc.	150 - 250	HSS	37	52	47	0.13 🛠	0.23
		250 - 350	SC, PC	30	43	40	0.10 🛠	0.20
	Tool Steel	150 - 200	SC	24	34	32	0.10	0.15
	H-13, H-21, A-4, 0-2, S-3, etc.	200 - 250	SC, PC	18	27	26	0.10	0.15
	High-Temp Alloy	140 - 220	SC, PC	9	12	11	0.08 🛠	0.18
	Hastelloy B, Inconel 600, etc.	220 - 310	PC	8	11	9	0.08 *	0.15
	Titanium Alloy	140 - 220	SC, PC	11	15	14	0.08 *	0.13
S	incanian / incy	220 - 310	PC	9	14	11	0.08 *	0.15
	Aerospace Alloy	185 - 275	SC, PC	23	32	29	0.15 *	0.20
	S82	275 - 350	SC, PC	18	27	24	0.13 🛠	0.18
	Stainlass Staal 400 Series	105 275		22	22	20	0.15 🚸	0.20
	Stainless Steel 400 Series	185 - 275	SC, PC	23 18	32	29 24	0.15 *	0.20
	416, 420, etc. Stainless Steel 300 Series	275 - 350 135 - 185	SC, PC SC, PC	23	27 32	24	0.13 *	0.18
Μ	304, 316, 17-4PH, etc.	185 - 275	SC, PC	18	27	29	0.08 *	0.13
	Super Duplex Stainless Steel	135 - 185	SC, PC	18	24	24	0.08 *	0.13
	Super Super Stanless Steel	185 - 275	SC, PC	15	20	18	0.08 *	0.15
		1	1 · ·		1	-	1	1
	Wear Plate	400	SC, PC	14	21	17	0.08 🛠	0.15
	Hardox [®] , AR400, T-1, etc.	500	PC	11	14	12	0.05 🛠	0.13
Н	Herdened Steel	600	N/A	- 15	-	-	-	- 0.15
	Hardened Steel	300 - 400 400 - 500	PC PC	15 11	29 14	21 12	0.08 *	0.15
		400-500			14	12	0.03 🐨	0.15
	Nodular, Grey, Ductile Cast Iron	120 - 150	HSS	52	76	67	0.18	0.30
		150 - 200	HSS	46	69	59	0.15	0.28
К		200 - 220	HSS	40	59	52	0.15	0.23
		220 - 260	SC, PC	34	50	44	0.13	0.18
		260 - 320	SC, PC	27	41	37	0.10	0.15
	Cast Aluminum	30	HSS	183	259	229	0.20	0.33
		180	HSS	91	137	122	0.20	0.33
	Wrought Aluminum	30	HSS	183	259	229	0.10	0.15
N		180	HSS	91	137	122	0.20	0.33
N	Aluminum Bronze	100 - 200	SC	52	76	67	0.15	0.28
		200 - 250	SC	40	58	52	0.13	0.18
	Brass	100	HSS	91	136	122	0.18	0.30
	Copper	60	SC	40	50	46	0.05 🛠	0.08

* Contact our Application Engineering department for assistance when machining these materials

Feed Rate (mm/rev) by Diameter									
17.53 mm - 24.38 mm	24.41 mm - 35.00 mm	35.01 mm - 47.80 mm	47.85 mm - 65.99 mm	66.00 mm - 114.48 mm					
0.33	0.41	0.51	0.58	0.71					
0.33	0.41	0.51	0.58	0.71					
0.33	0.41	0.51	0.58	0.71					
0.30	0.38	0.48	0.58	0.69					
0.30	0.38	0.48	0.58	0.69					
0.25	0.36	0.46	0.53	0.61					
0.25	0.36	0.46	0.53	0.61					
0.30	0.38	0.48	0.58	0.69					
0.25	0.36	0.46	0.53	0.61					
0.25	0.36	0.46	0.53	0.61					
0.23	0.30	0.41	0.48	0.56					
0.25	0.36	0.43	0.48	0.56					
0.25	0.36	0.43	0.48	0.56					
0.25	0.36	0.43	0.48	0.56					
0.23	0.30	0.38	0.43	0.51					
0.23	0.30	0.38	0.43	0.51					
0.23	0.25	0.36	0.43	0.51					
0.23	0.25	0.36	0.43	0.51					
0.20	0.23	0.30	0.38	0.46					
0.30	0.36	0.46	0.53	0.66					
0.25	0.30	0.41	0.48	0.61					
0.23	0.25	0.36	0.43	0.51					
0.20	0.25	0.30	0.38	0.43					
0.20	0.25	0.30	0.38	0.43					
0.20	0.25	0.30	0.38	-					
0.18	0.20	0.25	0.30	-					
0.20	0.25	0.30	0.38	-					
0.18	0.20	0.25	0.30	-					
0.23	0.25	0.36	0.41	0.51					
0.20	0.20	0.30	0.36	0.46					
0.23	0.25	0.36	0.41	0.51					
0.20	0.20	0.30	0.36	0.46					
0.20	0.25	0.36	0.41	0.51					
0.18	0.20	0.30	0.36	0.46					
0.20	0.25	0.36	0.41	0.51					
0.18	0.20	0.30	0.36	0.46					
	1	1	- 						
0.20	0.23	0.30	0.41	0.46					
0.18	0.20	0.25	0.30	0.41					
	-	-	-	-					
0.20	0.23	0.30	0.41	0.46					
0.18	0.20	0.25	0.30	0.41					
0.41	0.51	0.61	0.69	0.76					
0.36	0.46	0.56	0.64	0.71					
0.30	0.41	0.46	0.53	0.61					
0.23	0.30	0.36	0.43	0.51					
0.18	0.23	0.30	0.36	0.41					
0.41	0.51	0.56	0.64	0.64					
0.41	0.46	0.56	0.64	0.64					
0.25	0.30	0.56	0.64	0.64					
0.41	0.46	0.56	0.64	0.64					
0.36	0.46	0.56	0.66	0.71					
0.23	0.30	0.36	0.43	0.51					
0.41	0.51	0.61	0.71	0.76					
0.15	0.20	0.30	0.36	0.41					

Deep Hole Drilling Speed and Feed Adjustment

		A Holder Length										
	Extended	Long	Long Plus	XL	3XL							
Speed	0.90	0.85	0.80	0.80	0.75							
Feed	-	0.95	0.90	0.90	0.90							

Recommended Speed and Feed Example

If the recommended speed and feed is 50 M/min and 0.20 mm/ rev for a standard length holder, then the speed and feed using a 3XL holder in the same application would be 37.5 M/min and 0.18 mm/rev.

50 • 0.75 = 37.5 M/min 0.20	• 0.90 = 0.18 mm/rev
-----------------------------	----------------------

Formulas 1. **RPM** = (318.47 • M/min) / DIA where: RPM = revolutions per minute (rev/min) M/min = speed (M/min) DIA = diameter of drill (mm) = RPM • mm/rev 2. mm/min where: mm/min = mm per minute (mm/min) RPM = revolutions per minute (rev/min) mm/rev = feed rate (mm/rev) 3. M/min = RPM • 0.003 • DIA where: M/min = speed (M/min) RPM = revolutions per minute (rev/min) = diameter of drill (mm) DIA

A WARNING Tool failure can cause serious injury. To prevent:

- When using holders without support bushing, use a short T-A[®] holder to establish an initial hole that is a minimum of 2 diameters deep.

- Do not rotate tool holder more than 50 RPM unless it is engaged with the workpiece or fixture.

T-A[®] Recommended Drilling Data | Metric (mm)

Carbide Inserts

				M/min Feed Rate (mm/rev) by Diameter							
ISO	Material	Hardness (BHN)	Carbide Grade	Tin	TIAIN	TiCN	9.50 mm - 12.95 mm	12.98 mm - 17.52 mm	17.53 mm - 24.38 mm	24.41 mm - 35.00 mm	35.01 mm - 47.80 mm
	Free-Machining Steel	100 - 150	C5	96	128	115	0.20	0.30	0.38	0.45	0.53
	1118, 1215, 12L14, etc.	150 - 200	C5	85	110	100	0.18	0.28	0.35	0.40	0.48
	,,,,	200 - 250	C5	79	104	90	0.15	0.25	0.33	0.38	0.43
	Low-Carbon Steel	85 - 125	C5	91	119	110	0.20 *	0.25	0.33	0.43	0.48
	1010, 1020, 1025, 1522,	125 - 175	C5	79	104	90	0.18 🛠	0.25	0.33	0.40	0.45
	1144, etc.	175 - 225	C5	73	95	82	0.15 *	0.23	0.30	0.38	0.43
	11.1, 000	225 - 275	C5	64	83	75	0.13 🛠	0.23	0.30	0.38	0.43
	Medium-Carbon Steel	125 - 175	C5	79	104	90	0.18	0.25	0.33	0.40	0.45
	1030, 1040, 1050, 1527,	175 - 225	C5	73	95	84	0.15	0.23	0.30	0.38	0.43
	1140, 1151, etc.	225 - 275	C5	67	83	72	0.15	0.23	0.30	0.38	0.43
	-, -,	275 - 325	C5	55	70	62	0.13	0.20	0.28	0.35	0.40
_	Alloy Steel	125 - 175	C5	76	99	87	0.18	0.25	0.33	0.40	0.45
Р	4140, 5140, 8640, etc.	175 - 225	C5	70	92	80	0.15	0.23	0.30	0.38	0.43
		225 - 275	C5	64	83	72	0.15	0.23	0.30	0.38	0.43
		275 - 325	C5	61	76	68	0.13	0.20	0.28	0.35	0.40
		325 - 375	C5	52	67	60	0.10	0.18	0.25	0.33	0.38
	High-Strength Alloy	225 - 300	C5	49	61	55	0.15 🛠	0.23	0.25	0.30	0.38
	4340, 4330V, 300M, etc.	300 - 350	C5	43	55	49	0.13 🛠	0.20	0.23	0.28	0.35
		350 - 400	C5	37	49	43	0.10 🛠	0.18	0.20	0.25	0.30
	Structural Steel	100 - 150	C5	73	95	84	0.20 🛠	0.28	0.35	0.40	0.45
	A36, A285, A516, etc.	150 - 250	C5	61	76	68	0.15 🛠	0.25	0.30	0.35	0.40
		250 - 350	C5	55	70	62	0.13 🛠	0.23	0.28	0.30	0.35
	Tool Steel	150 - 200	C5	49	67	58	0.10	0.18	0.23	0.28	0.33
	H-13, H-21, A-4, 0-2, S-3, etc.	200 - 250	C5	37	52	45	0.10	0.18	0.23	0.28	0.33
	High-Temp Alloy	140 - 220	C2	24	32	28	0.10 🛠	0.18	0.23	0.28	0.33
	Hastelloy B, Inconel 600, etc.	220 - 310	C2	18	26	22	0.10 🛠	0.15	0.20	0.25	0.30
s	Titanium Alloy	140 - 220	C2	30	38	32	0.10 🛠	0.18	0.23	0.28	0.33
5		220 - 310	C2	24	33	28	0.10 🛠	0.15	0.20	0.25	0.30
	Aerospace Alloy	185 - 275	C2	49	64	57	0.17 🛠	0.22	0.29	0.35	0.40
	S82	275 - 350	C2	37	49	43	0.14 🛠	0.19	0.27	0.30	0.35
	Stainless Steel 400 Series	185 - 275	C2	49	64	57	0.17 🛠	0.22	0.29	0.35	0.40
	416, 420, etc.	275 - 350	C2	37	49	43	0.14 🛠	0.19	0.27	0.30	0.35
D.4	Stainless Steel 300 Series	135 - 185	C2	49	64	57	0.13 🛠	0.17	0.22	0.26	0.30
Μ	304, 316, 17-4PH, etc.	185 - 275	C2	37	49	43	0.11 🛠	0.14	0.20	0.22	0.25
	Super Duplex Stainless Steel	135 - 185	C2	25	33	29	0.11 🛠	0.15	0.19	0.23	0.27
		185 - 275	C2	19	25	22	0.09 🛠	0.13	0.18	0.20	0.23

* Contact our Application Engineering department for assistance when machining these materials

					M/min			Feed Rate	(mm/rev) by	y Diameter	
ISO	Material	Hardness (BHN)	Carbide Grade	Tin	TiAlN	TiCN	9.50 mm - 12.95 mm	12.98 mm - 17.52 mm		24.41 mm - 35.00 mm	35.01 mm - 47.80 mm
	Wear Plate	400	C5	23	35	30	0.07	0.12	0.20	0.25	0.30
	Hardox [®] , AR400, T-1, etc.	500	C5	15	26	21	0.05	0.10	0.15	0.20	0.25
н		600	C5	11	22	16	0.04	0.08	0.12	0.16	0.20
	Hardened Steel	300 - 400	C5	34	43	39	0.10 🛠	0.18	0.23	0.28	0.33
		400 - 500	C5	20	25	23	0.08 🛠	0.15	0.20	0.23	0.28
	Nodular, Grey, Ductile Cast Iron	120 - 150 150 - 200	C2, C3 C2, C3	98 82	141 122	127 102	0.20	0.30	0.38	0.48	0.58
к	Ductile cast from	200 - 220	C2, C3	73	110	93	0.15	0.23	0.30	0.38	0.35
		220 - 260	C2, C3	64	95	79	0.13	0.20	0.28	0.33	0.38
		260 - 320	C2, C3	55	83	69	0.13	0.18	0.25	0.28	0.33
	Cast Aluminum	30	C2	366	460	410	0.25	0.38	0.45	0.50	0.55
		180	C2	244	306	275	0.23	0.33	0.40	0.45	0.50
	Wrought Aluminum	30	C2	366	460	410	0.10	0.15	0.25	0.30	0.36
N		180	C2	244	306	275	0.20	0.28	0.36	0.45	0.50
IN	Aluminum Bronze	100 - 200	C2	85	110	100	0.13	0.20	0.25	0.36	0.42
		200 - 250	C2	64	94	79	0.10	0.15	0.18	0.25	0.33
	Brass	100	C2	130	184	160	0.15	0.23	0.28	0.38	0.45
	Copper	60	C2	80	120	100	0.05 🛠	0.08	0.10	0.15	0.25

* Contact our Application Engineering department for assistance when machining these materials

Deep Hole Drilling Speed and Feed Adjustment

		A Holder Length									
	Extended	Long	Long Plus	XL	3XL						
Speed	0.90	0.85	0.80	0.80	0.75						
Feed	-	0.95	0.90	0.90	0.90						

Recommended Speed and Feed Example

If the recommended speed and feed is 50 M/min and 0.20 mm/rev for a standard length holder, then the speed and feed using a 3XL holder in the same application would be 37.5 M/min and 0.18 mm/rev.

50 • 0.75 = 37.5 M/min

0.20 • 0.90 = 0.18 mm/rev

Formulas

1	. RPM	= (318.47 • M/min) / DIA	2.	mm/min	= RPM • mm/rev	3.	M/min	= RPM • 0.003 • DIA
	where:			where:			where:	
	RPM	= revolutions per minute (rev/min)		mm/min	= mm per minute (mm/min)		M/min	= speed (M/min)
	M/min	= speed (M/min)		RPM	= revolutions per minute (rev/min)		RPM	= revolutions per minute (rev/min)
	DIA	= diameter of drill (mm)		mm/rev	= feed rate (mm/rev)		DIA	= diameter of drill (mm)

• WARNING Tool failure can cause serious injury. To prevent:

- When using holders without support bushing, use a short T-A® holder to establish an initial hole that is a minimum of 2 diameters deep.

- Do not rotate tool holder more than 50 RPM unless it is engaged with the workpiece or fixture.

T-A[®] Recommended Drilling Data | Metric (mm)

HSS Inserts | Flat Bottom Geometry

					M/	min	
		Hardness	HSS	00	0.	0.0	0.0
ISO	Material	(BHN)	Grade	TiN	TiAIN	TiCN	AM200®
	Free-Machining Steel	100 - 150	HSS	52	76	70	88
	1118, 1215, 12L14, etc.	150 - 200	HSS	47	70	62	81
		200 - 250	HSS	43	64	56	74
	Low-Carbon Steel	85 - 125	HSS	46	67	59 56	77 74
	1010, 1020, 1025, 1522, 1144, etc.	125 - 175 175 - 225	HSS HSS	43 40	64 59	53	68
		225 - 275	HSS	37	56	47	65
	Medium-Carbon Steel	125 - 175	HSS	43	64	56	74
	1030, 1040, 1050, 1527, 1140, 1151, etc.	175 - 225	HSS	40	59	53	68
	,,,,,,,,,,,,	225 - 275	HSS	37	56	47	65
		275 - 325	SC	34	53	46	61
	Alloy Steel	125 - 175	HSS	40	56	53	65
Р	4140, 5140, 8640, etc.	175 - 225	HSS	37	53	47	61
		225 - 275	HSS	34	47	44	54
		275 - 325	SC	32	44	41	51
		325 - 375	SC	29	41	38	47
	High-Strength Alloy	225 - 300	SC	21	29	26	33
	4340, 4330V, 300M, etc.	300 - 350	SC	15	23	21	27
		350 - 400	SC	13	20	18	23
	Structural Steel	100 - 150	HSS	36	52	47	60
	A36, A285, A516, etc.	150 - 250	HSS	32	44	41	51
	Tool Steel	250 - 350	SC SC	26	37	34	43
		150 - 200 200 - 250	SC	21 15	29 24	27 23	33 28
	H-13, H-21, A-4, 0-2, S-3, etc.	200 - 250	30	15	24	25	20
	High-Temp Alloy	140 - 220	SC	7	10	9	13
	Hastelloy B, Inconel 600, etc.	220 - 310	SC	6	9	7	10
S	Titanium Alloy	140 - 220	SC	10	14	12	16
		220 - 310	SC	8	12	11	14
	Aerospace Alloy	185 - 275	SC	20	27	26	34
	\$82	275 - 350	SC	15	24	21	28
	Stainless Steel 400 Series	185 - 275	SC	20	27	26	34
	416, 420, etc.	275 - 350	SC	15	24	21	28
м	Stainless Steel 300 Series	135 - 185	SC	20	27	26	34
	304, 316, 17-4PH, etc.	185 - 275	SC	15	24	21	28
	Super Duplex Stainless Steel	135 - 185	SC	20	27	26	34
		185 - 275	SC	15	24	21	28
	Wear Plate	400	SC	-	-	-	-
	Hardox [®] , AR400, T-1, etc.	500	SC	-	-	-	-
н		600	N/A	-	-	-	-
	Hardened Steel	300 - 400	SC	13	20	18	24
		400 - 500	SC	8	12	10	13
	Nodular, Grey, Ductile Cast Iron	120 - 150	HSS	46	67	59	77
		150 - 200	HSS	40	59	53	68
К		200 - 220	HSS	34	53	46	61
		220 - 260	SC	29	46	38	53
		260 - 320	SC	24	37	32	43
the second division of		1	HSS	î			
	Cost Aluminum			160	228	198	-
	Cast Aluminum	30				107	
		180	HSS	79	122	107	-
	Cast Aluminum Wrought Aluminum	180 30	HSS HSS	79 160	122 228	198	261
N	Wrought Aluminum	180 30 180	HSS HSS HSS	79 160 79	122 228 122	198 107	261 141
N		180 30 180 100 - 200	HSS HSS HSS SC	79 160 79 40	122 228 122 59	198 107 53	261 141 70
N	Wrought Aluminum	180 30 180	HSS HSS HSS	79 160 79	122 228 122	198 107	261 141

* Contact our Application Engineering department for assistance when machining these materials

9.50 mm 12.98 mm 17.53 mm 24.38 mm 35.00 mm 47.80 mm 65.99 mm 0.15 0.23 0.28 0.35 0.41 0.46 0.13 0.23 0.28 0.35 0.41 0.46 0.13 0.23 0.28 0.35 0.38 0.43 0.13 0.20 0.25 0.33 0.38 0.43 0.10 0.18 0.23 0.30 0.36 0.41 0.10 0.18 0.23 0.30 0.36 0.43 0.10 0.18 0.23 0.30 0.36 0.43 0.10 0.18 0.23 0.30 0.36 0.43 0.10 0.15 0.20 0.25 0.33 0.41 0.10 0.15 0.20 0.25 0.30 0.38 0.10 0.15 0.20 0.25 0.30 0.38 0.10 0.13 0.20 0.25 0.30 0.38 0.10		Fe	ed Rate (mm/	rev) by Diame	ter	
12.95 mm 17.53 mm 24.38 mm 35.00 mm 47.80 mm 65.99 mm 0.15 0.23 0.28 0.35 0.41 0.46 0.15 0.23 0.28 0.35 0.41 0.46 0.13 0.20 0.25 0.33 0.38 0.43 0.13 ◆ 0.20 0.25 0.33 0.38 0.41 0.10 ◆ 0.18 0.23 0.30 0.36 0.41 0.10 ◆ 0.18 0.23 0.30 0.36 0.43 0.10 0.18 0.23 0.30 0.36 0.43 0.10 0.18 0.23 0.30 0.33 0.41 0.10 0.18 0.23 0.30 0.33 0.41 0.10 0.18 0.23 0.30 0.33 0.41 0.10 0.13 0.20 0.25 0.30 0.38 0.10 0.13 0.20 0.23 0.25 0.30 0.10 0.13 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						
0.15 0.23 0.28 0.35 0.41 0.46 0.15 0.23 0.28 0.35 0.41 0.46 0.13 0.23 0.28 0.35 0.38 0.43 0.13 0.20 0.25 0.33 0.38 0.43 0.10 0.18 0.23 0.30 0.36 0.41 0.10 0.18 0.23 0.30 0.36 0.43 0.10 0.18 0.23 0.30 0.36 0.43 0.10 0.18 0.23 0.30 0.36 0.43 0.10 0.18 0.23 0.30 0.33 0.41 0.10 0.18 0.23 0.30 0.33 0.41 0.10 0.15 0.20 0.25 0.30 0.38 0.08 0.13 0.20 0.25 0.30 0.38 0.08 0.13 0.16 0.23 0.25 0.30 0.08 0.13 0.18						
0.15 0.23 0.28 0.35 0.41 0.46 $0.13 \diamond$ 0.20 0.25 0.33 0.38 0.43 $0.13 \diamond$ 0.20 0.25 0.33 0.38 0.41 $0.10 \diamond$ 0.18 0.23 0.30 0.36 0.43 $0.10 \diamond$ 0.18 0.23 0.30 0.36 0.43 $0.10 \circ$ 0.18 0.23 0.30 0.36 0.43 0.10 0.18 0.23 0.30 0.36 0.43 0.10 0.18 0.23 0.30 0.33 0.41 0.10 0.18 0.23 0.30 0.33 0.41 0.10 0.13 0.20 0.25 0.30 0.36 0.10 0.13 0.20 0.23 0.25 0.30 0.36 0.10 0.13 0.20 0.23 0.20 0.23 0.23 0.23 <				0.35		
0.13 0.20 0.25 0.33 0.38 0.43 0.10 0.18 0.23 0.30 0.36 0.41 0.10 0.18 0.23 0.30 0.36 0.41 0.10 0.18 0.23 0.30 0.36 0.43 0.11 0.20 0.25 0.33 0.36 0.43 0.10 0.18 0.23 0.30 0.36 0.43 0.10 0.18 0.23 0.30 0.33 0.41 0.10 0.15 0.20 0.25 0.30 0.33 0.41 0.10 0.15 0.23 0.30 0.33 0.41 0.10 0.15 0.20 0.25 0.30 0.38 0.08 0.15 0.20 0.23 0.25 0.30 0.08 0.15 0.20 0.23 0.25 0.30 0.08 0.15 0.18 0.20 0.23 0.25 0.20 0.23 <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>					-	
0.13 ★ 0.20 0.25 0.33 0.38 0.41 0.10 ★ 0.18 0.23 0.30 0.36 0.41 0.10 ★ 0.18 0.23 0.30 0.36 0.43 0.10 0.18 0.23 0.30 0.36 0.43 0.10 0.18 0.23 0.30 0.36 0.43 0.10 0.18 0.23 0.30 0.33 0.41 0.10 0.18 0.23 0.30 0.33 0.41 0.10 0.18 0.23 0.30 0.33 0.41 0.10 0.13 0.20 0.25 0.30 0.38 0.08 0.13 0.20 0.23 0.25 0.30 0.08 ♦ 0.13 0.18 0.20 0.23 0.25 0.30 0.10 ♦ 0.20 0.23 0.25 0.30 0.38 0.43 0.10 ♦ 0.13 0.18 0.23 0.25 0.30 0.						
0.10 ★ 0.18 0.23 0.30 0.36 0.41 0.10 ★ 0.18 0.23 0.30 0.36 0.38 0.13 0.20 0.25 0.33 0.38 0.43 0.10 0.18 0.23 0.30 0.36 0.43 0.10 0.15 0.20 0.25 0.33 0.41 0.10 0.15 0.20 0.25 0.30 0.33 0.10 0.15 0.23 0.30 0.33 0.41 0.10 0.15 0.23 0.30 0.38 0.08 0.13 0.20 0.25 0.30 0.38 0.08 0.15 0.20 0.23 0.25 0.30 0.08 ♦ 0.15 0.20 0.23 0.25 0.30 0.38 0.10 ♦ 0.20 0.23 0.25 0.30 0.38 0.43 0.10 ♦ 0.20 0.23 0.23 0.25 0.30 0.38 0.10	0.13 🛠	0.20	0.25	0.33	0.38	0.43
$0.10 \Leftrightarrow$ 0.18 0.23 0.30 0.36 0.38 0.13 0.20 0.25 0.33 0.38 0.46 0.10 0.18 0.23 0.30 0.36 0.43 0.10 0.15 0.20 0.25 0.33 0.43 0.10 0.18 0.23 0.30 0.33 0.41 0.10 0.18 0.23 0.30 0.33 0.41 0.10 0.13 0.20 0.25 0.30 0.36 0.10 0.13 0.20 0.23 0.25 0.30 0.36 0.10 0.15 0.20 0.23 0.25 0.30 0.36 0.10 0.13 0.18 0.20 0.23 0.25 0.30 $0.08 \diamondsuit$ 0.13 0.18 0.23 0.25 0.30 $0.10 \checkmark$ 0.18 0.23 0.25 0.30 $0.10 \leftarrow$ <td>0.13 🛠</td> <td>0.20</td> <td>0.25</td> <td>0.33</td> <td>0.38</td> <td>0.41</td>	0.13 🛠	0.20	0.25	0.33	0.38	0.41
0.13 0.20 0.25 0.33 0.38 0.46 0.10 0.18 0.23 0.30 0.36 0.43 0.10 0.15 0.20 0.25 0.33 0.41 0.10 0.15 0.20 0.25 0.33 0.41 0.10 0.15 0.23 0.30 0.33 0.41 0.10 0.15 0.23 0.30 0.33 0.41 0.10 0.15 0.20 0.25 0.30 0.38 0.08 0.13 0.20 0.23 0.25 0.30 $0.08 \diamondsuit$ 0.15 0.20 0.23 0.25 0.30 $0.10 \bigstar$ 0.12 0.22 0.23 0.25 0.30 $0.10 \bigstar$ 0.18 0.20 0.23 0.25 0.30 $0.10 \bigstar$ 0.18 0.20 0.23 0.25 0.30 $0.10 \bigstar$ 0.18 0.20 </td <td>0.10 🛠</td> <td>0.18</td> <td>0.23</td> <td>0.30</td> <td>0.36</td> <td>0.41</td>	0.10 🛠	0.18	0.23	0.30	0.36	0.41
0.10 0.18 0.23 0.30 0.36 0.43 0.10 0.15 0.20 0.25 0.33 0.43 0.10 0.15 0.23 0.30 0.33 0.41 0.10 0.18 0.23 0.30 0.33 0.41 0.10 0.15 0.23 0.30 0.33 0.41 0.10 0.13 0.20 0.25 0.30 0.38 0.08 0.13 0.20 0.23 0.25 0.30 0.38 $0.08 \bullet$ 0.15 0.20 0.23 0.25 0.30 0.38 $0.10 \bullet$ 0.13 0.18 0.20 0.23 0.25 0.30 $0.10 \bullet$ 0.18 0.20 0.23 0.25 0.30 $0.10 \bullet$ 0.13 0.18 0.23 0.25 0.30 $0.10 \bullet$ 0.13 0.18 0.23 0.25 0.30 <	0.10 🛠	0.18	0.23	0.30	0.36	0.38
0.10 0.18 0.23 0.30 0.36 0.43 0.13 0.18 0.23 0.30 0.33 0.41 0.10 0.18 0.23 0.30 0.33 0.41 0.10 0.15 0.23 0.30 0.33 0.41 0.10 0.13 0.20 0.25 0.30 0.33 0.41 0.10 0.13 0.20 0.25 0.30 0.36 0.10^{*} 0.15 0.20 0.23 0.25 0.30 0.36 0.13^{*} 0.23 0.25 0.30 0.38 0.43 0.10^{*} 0.12 0.23 0.25 0.30 0.38 0.10^{*} 0.18 0.20 0.23 0.25 0.30 0.10^{*} 0.13 0.18 0.23 0.25 0.30 0.10^{*} 0.13 0.18 0.23 0.25 0.30	0.13	0.20	0.25	0.33	0.38	0.46
0.10 0.15 0.20 0.25 0.33 0.34 0.13 0.18 0.23 0.30 0.33 0.41 0.10 0.15 0.23 0.30 0.33 0.41 0.10 0.15 0.23 0.30 0.33 0.41 0.10 0.13 0.20 0.25 0.30 0.36 0.08 0.15 0.20 0.23 0.25 0.30 0.08 0.15 0.20 0.23 0.25 0.30 0.08 0.13 0.18 0.20 0.23 0.25 0.30 0.10 0.18 0.20 0.23 0.25 0.30 0.38 0.10 0.13 0.18 0.23 0.23 0.25 0.30 0.10 0.13 0.18 0.23 0.25 0.30 0.10 0.13 0.18 0.23 0.25 0.30	0.10	0.18	0.23	0.30	0.36	0.43
0.13 0.18 0.23 0.30 0.33 0.41 0.10 0.15 0.23 0.30 0.33 0.41 0.10 0.15 0.23 0.30 0.33 0.41 0.10 0.13 0.20 0.25 0.30 0.38 0.08 0.15 0.20 0.23 0.25 0.30 $0.08 \diamondsuit$ 0.13 0.18 0.20 0.23 0.25 0.30 $0.08 \diamondsuit$ 0.13 0.18 0.20 0.23 0.25 0.30 $0.10 \checkmark$ 0.18 0.20 0.23 0.30 0.38 0.10 0.13 0.18 0.23 0.25 0.30 0.10 0.13 0.18 0.23 0.25 0.30 0.10 0.13 0.18 0.23 0.25 0.30 $0.08 \diamondsuit$ 0.15 0.18 0.23 0.25 0.30 $0.08 \checkmark$ </td <td>0.10</td> <td>0.18</td> <td>0.23</td> <td>0.30</td> <td>0.36</td> <td>0.43</td>	0.10	0.18	0.23	0.30	0.36	0.43
0.10 0.18 0.23 0.30 0.33 0.41 0.10 0.13 0.20 0.25 0.30 0.38 0.08 0.13 0.20 0.25 0.30 0.36 0.10 0.15 0.20 0.23 0.25 0.30 0.08 0.15 0.20 0.23 0.25 0.30 0.08 0.13 0.18 0.20 0.23 0.25 0.30 0.08 0.13 0.18 0.20 0.23 0.25 0.30 0.10 0.13 0.18 0.23 0.25 0.30 0.38 0.10 0.13 0.18 0.23 0.25 0.30 0.10 0.13 0.18 0.23 0.25 0.30 0.10 0.13 0.18 0.23 0.25 0.30 0.08 0.15 0.18 0.23 0.25 0.30	0.10	0.15	0.20	0.25	0.33	0.38
0.10 0.15 0.23 0.30 0.33 0.41 0.10 0.13 0.20 0.25 0.30 0.38 0.08 0.13 0.20 0.25 0.30 0.36 0.10 0.15 0.20 0.23 0.25 0.30 0.08 0.13 0.18 0.20 0.23 0.25 0.30 0.08 0.13 0.18 0.20 0.23 0.25 0.33 0.41 0.10 0.18 0.20 0.23 0.25 0.30 0.38 0.10 0.13 0.18 0.23 0.25 0.30 0.10 0.13 0.18 0.23 0.25 0.30 0.08 0.15 0.18 0.23 0.25 0.30 0.08 0.13 0.15 0.18 0.23 0.25 0.30 0.08 0.13 0.18 0.23 0.25	0.13	0.18	0.23	0.30	0.33	0.41
0.10 0.13 0.20 0.25 0.30 0.38 0.08 0.15 0.20 0.23 0.25 0.30 $0.08 \\ +$ 0.15 0.20 0.23 0.25 0.30 $0.08 \\ +$ 0.13 0.18 0.20 0.23 0.25 0.30 $0.08 \\ +$ 0.13 0.18 0.20 0.23 0.23 0.28 $0.13 \\ +$ 0.20 0.23 0.25 0.33 0.41 $0.10 \\ +$ 0.18 0.20 0.23 0.25 0.30 0.10 0.13 0.18 0.23 0.25 0.30 0.10 0.13 0.18 0.23 0.25 0.30 $0.08 \\ +$ 0.13 0.15 0.18 0.23 0.25 0.30 $0.08 \\ +$ 0.13 0.15 0.18 0.23 0.25 0.30 $0.13 \\ +$ 0.18 0.23 0.25 0.30		0.18	0.23	0.30	0.33	
0.08 0.13 0.20 0.25 0.30 0.36 $0.10 \bullet$ 0.15 0.20 0.23 0.25 0.30 $0.08 \bullet$ 0.13 0.18 0.20 0.23 0.22 0.23 $0.08 \bullet$ 0.13 0.18 0.20 0.23 0.23 0.30 0.38 $0.10 \bullet$ 0.18 0.20 0.23 0.30 0.38 0.41 $0.10 \bullet$ 0.18 0.20 0.23 0.30 0.38 0.10 0.13 0.18 0.23 0.25 0.30 $0.08 \bullet$ 0.15 0.18 0.23 0.25 0.30 $0.08 \bullet$ 0.15 0.18 0.23 0.25 0.30 $0.08 \bullet$ 0.13 0.15 0.18 0.23 0.25 0.30 $0.08 \bullet$ 0.13 0.15 0.18 0.23 0.25 0.30 $0.13 \bullet$ 0.18 0.23						
$0.10 \\ +$ 0.15 0.20 0.23 0.25 0.30 $0.08 \\ +$ 0.13 0.18 0.20 0.23 0.25 0.30 $0.13 \\ +$ 0.23 0.25 0.30 0.38 0.43 $0.10 \\ +$ 0.20 0.23 0.25 0.33 0.41 $0.10 \\ +$ 0.18 0.20 0.23 0.25 0.30 0.38 $0.10 \\ 0.13$ 0.18 0.23 0.25 0.30 $0.08 \\ +$ 0.15 0.18 0.23 0.25 0.30 $0.08 \\ +$ 0.15 0.18 0.23 0.25 0.30 $0.08 \\ +$ 0.13 0.15 0.18 0.20 0.25 0.30 $0.08 \\ +$ 0.13 0.15 0.18 0.23 0.25 0.30 $0.13 \\ +$ 0.18 0.20 0.25 0.30 0.36 $0.14 \\ +$ 0.15 0.18 0.23						
$0.08 \\ +$ 0.15 0.20 0.23 0.25 0.30 $0.08 \\ +$ 0.13 0.18 0.20 0.23 0.23 0.23 0.23 0.41 $0.10 \\ +$ 0.20 0.23 0.23 0.30 0.38 0.41 $0.10 \\ +$ 0.18 0.20 0.23 0.30 0.38 $0.10 \\ 0.13$ 0.18 0.23 0.25 0.30 $0.10 \\ 0.13 \\ 0.18 \\ 0.23 \\ 0.25 \\ 0.30 \\ 0.08 \\ +$ $0.15 \\ 0.18 \\ 0.23 \\ 0.25 \\ 0.30 \\ 0.08 \\ +$ $0.15 \\ 0.18 \\ 0.20 \\ 0.25 \\ 0.30 \\ 0.08 \\ +$ $0.18 \\ 0.20 \\ 0.25 \\ 0.30 \\ 0.38 \\ 0.13 \\ +$ $0.18 \\ 0.20 \\ 0.25 \\ 0.30 \\ 0.36 \\ 0.13 \\ +$ $0.18 \\ 0.25 \\ 0.30 \\ 0.36 \\ 0.28 \\ -$						
$0.08 \\ +$ 0.13 0.18 0.20 0.23 0.23 0.23 0.23 0.38 0.43 $0.10 \\ +$ 0.12 0.20 0.23 0.30 0.38 0.41 $0.10 \\ +$ 0.18 0.20 0.23 0.30 0.38 0.10 0.13 0.18 0.23 0.25 0.30 0.10 0.13 0.18 0.23 0.25 0.30 $0.08 \\ +$ 0.15 0.18 0.23 0.25 0.30 $0.08 \\ +$ 0.13 0.15 0.18 0.23 0.25 0.30 $0.08 \\ +$ 0.13 0.15 0.18 0.23 0.25 0.30 $0.08 \\ +$ 0.13 0.18 0.23 0.25 0.30 $0.13 \\ 0.18$ 0.20 0.25 0.30 0.36 $0.14 \\ 0.15$ 0.18 0.23 0.25 0.28 $0.13 \\ -$ <						
$0.13 \\ +$ 0.23 0.25 0.30 0.38 0.43 $0.10 \\ +$ 0.20 0.23 0.25 0.33 0.41 $0.10 \\ +$ 0.18 0.20 0.23 0.30 0.38 $0.10 \\ 0.13 \\ 0.18 \\ 0.23 \\ 0.25 \\ 0.30 \\ 0.25 \\ 0.30 \\ 0.25 \\ 0.30 \\ 0.25 \\ 0.30 \\ 0.25 \\ 0.30 \\ 0.25 \\ 0.30 \\ 0.33 \\ 0.18 \\ 0.23 \\ 0.25 \\ 0.30 \\ 0.33 \\ 0.36 \\ 0.15 \\ 0.18 \\ 0.23 \\ 0.25 \\ 0.28 \\ 0.30 \\ 0.36 \\ 0.36 \\ 0.36 \\ 0.36 \\ 0.36 \\ 0.36 \\ 0.25 \\ -$						
$0.10 \\ \diamond$ 0.20 0.23 0.25 0.33 0.41 $0.10 \\ \diamond$ 0.18 0.20 0.23 0.30 0.38 0.10 0.13 0.18 0.23 0.25 0.30 0.10 0.13 0.18 0.23 0.25 0.30 $0.08 \\ \diamond$ 0.15 0.18 0.23 0.25 0.30 $0.08 \\ \diamond$ 0.13 0.15 0.18 0.23 0.25 0.30 $0.08 \\ \diamond$ 0.13 0.15 0.18 0.23 0.25 0.30 $0.08 \\ \diamond$ 0.13 0.15 0.18 0.23 0.25 0.30 $0.08 \\ \diamond$ 0.15 0.18 0.23 0.25 0.30 $0.13 \\ \bullet$ 0.18 0.20 0.25 0.30 0.38 $0.10 \\ \bullet$ 0.15 0.18 0.23 0.25 0.28 $0.13 \\ \bullet$ 0.18 0.23 0.25 0.28		1	Î.	Í	ĺ	
$0.10 \\ \diamond$ 0.18 0.20 0.23 0.30 0.38 0.10 0.13 0.18 0.23 0.25 0.30 0.10 0.13 0.18 0.23 0.23 0.28 $0.08 \\ \diamond$ 0.15 0.18 0.23 0.25 0.30 $0.08 \\ \diamond$ 0.13 0.15 0.18 0.23 0.25 0.30 $0.08 \\ \diamond$ 0.15 0.18 0.23 0.25 0.30 $0.08 \\ \diamond$ 0.13 0.15 0.18 0.20 0.25 0.30 $0.18 \\ 0.13 \\ \bullet$ 0.18 0.20 0.25 0.30 0.36 $0.13 \\ \bullet$ 0.18 0.20 0.25 0.28						
0.10 0.13 0.18 0.23 0.25 0.30 0.10 0.13 0.18 0.23 0.23 0.23 $0.08 \diamondsuit$ 0.15 0.18 0.23 0.25 0.30 $0.08 \diamondsuit$ 0.13 0.15 0.18 0.225 0.30 $0.08 \diamondsuit$ 0.13 0.15 0.18 0.22 0.25 $0.08 \diamondsuit$ 0.13 0.15 0.18 0.20 0.25 $0.13 \diamondsuit$ 0.18 0.20 0.25 0.30 0.38 $0.10 \checkmark$ 0.15 0.18 0.23 0.25 0.30 $0.13 \checkmark$ 0.18 0.20 0.25 0.30 0.36 $0.10 \checkmark$ 0.15 0.18 0.23 0.25 0.28 $0.13 \checkmark$ 0.18 0.23 0.25 0.30 0.36 $0.10 \checkmark$ 0.15 0.18 0.23 0.25 0.28 $0.13 \sim$ 0.18						
0.10 0.13 0.18 0.23 0.23 0.28 $0.08 \diamondsuit$ 0.15 0.18 0.23 0.25 0.30 $0.08 \diamondsuit$ 0.13 0.15 0.18 0.225 0.30 $0.08 \diamondsuit$ 0.15 0.18 0.23 0.25 0.30 $0.08 \bigstar$ 0.13 0.15 0.18 0.20 0.25 0.30 $0.08 \bigstar$ 0.13 0.15 0.18 0.20 0.25 0.30 0.38 $0.10 \bigstar$ 0.15 0.18 0.23 0.25 0.30 0.36 $0.13 \bigstar$ 0.18 0.20 0.25 0.30 0.36 $0.13 \checkmark$ 0.18 0.20 0.25 0.30 0.36 $0.13 \checkmark$ 0.18 0.20 0.25 0.30 0.36 $0.10 \checkmark$ 0.15 0.18 0.23 0.25 0.28 $0.13 \sim$ 0.16 0.27 0.38 0.64	-	1				
$0.08 \Leftrightarrow$ 0.15 0.18 0.23 0.25 0.30 $0.08 \diamondsuit$ 0.13 0.15 0.18 0.225 0.30 $0.08 \diamondsuit$ 0.15 0.18 0.23 0.25 0.30 $0.08 \diamondsuit$ 0.13 0.15 0.18 0.20 0.25 0.30 $0.08 \diamondsuit$ 0.13 0.15 0.18 0.20 0.25 0.30 0.38 $0.10 \diamondsuit$ 0.15 0.18 0.23 0.25 0.30 0.36 $0.13 \checkmark$ 0.18 0.20 0.25 0.30 0.36 $0.13 \sim$ 0.18 0.23 0.25 0.28 0.25 0.28 $$ - - - -						
$0.08 \Leftrightarrow$ 0.13 0.15 0.18 0.20 0.25 $0.08 \diamondsuit$ 0.15 0.18 0.23 0.25 0.30 $0.08 \diamondsuit$ 0.13 0.15 0.18 0.20 0.25 0.30 $0.13 \diamondsuit$ 0.18 0.20 0.25 0.30 0.38 $0.10 \checkmark$ 0.15 0.18 0.23 0.25 0.30 $0.13 \checkmark$ 0.18 0.20 0.25 0.30 0.36 $0.13 \checkmark$ 0.18 0.23 0.25 0.28 $0.13 \checkmark$ 0.18 0.23 0.25 0.28 $0.13 \sim$ 0.13 0.18 0.23 0.28 $0.15 \sim$ $0.25 0.36 0.43 $	0.10	0.13	0.18	0.23	0.23	0.28
$0.08 \\ \diamond$ 0.15 0.18 0.23 0.25 0.30 $0.08 \\ \diamond$ 0.13 0.15 0.18 0.20 0.25 $0.13 \\ \diamond$ 0.18 0.20 0.25 0.30 0.38 $0.10 \\ \diamond$ 0.15 0.18 0.23 0.25 0.30 $0.13 \\ \diamond$ 0.18 0.20 0.25 0.30 0.36 $0.13 \\ \diamond$ 0.18 0.20 0.25 0.28 0.28 $0.13 \\ \circ$ 0.18 0.20 0.25 0.28 0.28 $ -$ <td< td=""><td>0.08 🍫</td><td>0.15</td><td>0.18</td><td>0.23</td><td>0.25</td><td>0.30</td></td<>	0.08 🍫	0.15	0.18	0.23	0.25	0.30
$0.08 \\ +$ 0.13 0.15 0.18 0.20 0.25 $0.13 \\ +$ 0.18 0.20 0.25 0.30 0.38 $0.10 \\ +$ 0.15 0.18 0.23 0.25 0.30 $0.13 \\ +$ 0.15 0.18 0.23 0.25 0.30 $0.13 \\ +$ 0.15 0.18 0.23 0.25 0.30 $0.13 \\ +$ 0.18 0.20 0.25 0.30 0.36 $0.13 \\ +$ 0.18 0.20 0.25 0.30 0.36 $0.10 \\ +$ 0.15 0.18 0.23 0.25 0.28 $0.13 \\ +$ 0.18 0.23 0.25 0.30 0.36 $ -$	0.08 🛠	0.13	0.15	0.18	0.20	0.25
$0.13 \\ +$ 0.18 0.20 0.25 0.30 0.38 $0.10 \\ +$ 0.15 0.18 0.23 0.25 0.30 $0.13 \\ +$ 0.18 0.20 0.25 0.30 0.36 $0.13 \\ +$ 0.15 0.18 0.23 0.25 0.30 0.36 $0.13 \\ +$ 0.18 0.20 0.25 0.30 0.36 $0.13 \\ +$ 0.18 0.23 0.25 0.28 $0.13 \\ +$ 0.18 0.23 0.25 0.28 $0.13 \\ +$ 0.18 0.23 0.25 0.28 $ -$ </td <td>0.08 🛠</td> <td>0.15</td> <td>0.18</td> <td>0.23</td> <td>0.25</td> <td>0.30</td>	0.08 🛠	0.15	0.18	0.23	0.25	0.30
0.10* 0.15 0.18 0.23 0.25 0.30 0.13 * 0.18 0.20 0.25 0.30 0.36 0.10 * 0.15 0.18 0.23 0.25 0.30 0.36 0.13 * 0.18 0.20 0.25 0.30 0.36 0.13 * 0.18 0.20 0.25 0.30 0.36 0.13 * 0.18 0.20 0.25 0.30 0.36 0.13 * 0.18 0.23 0.25 0.28 0.13 * 0.18 0.23 0.25 0.28 $ 0.08$ <td>0.08 🍫</td> <td>0.13</td> <td>0.15</td> <td>0.18</td> <td>0.20</td> <td>0.25</td>	0.08 🍫	0.13	0.15	0.18	0.20	0.25
$0.13 \\ \diamond$ 0.18 0.20 0.25 0.30 0.36 $0.10 \\ \diamond$ 0.15 0.18 0.23 0.25 0.30 0.36 $0.13 \\ \diamond$ 0.18 0.20 0.25 0.30 0.36 $0.10 \\ \diamond$ 0.15 0.18 0.23 0.25 0.30 0.36 $0.13 \\ \diamond$ 0.18 0.20 0.25 0.30 0.36 $0.13 \\ \diamond$ 0.18 0.23 0.25 0.28 $0.13 \\ \diamond$ 0.15 0.18 0.23 0.25 0.28 $ -$ <td< td=""><td>0.13 🍫</td><td>0.18</td><td>0.20</td><td>0.25</td><td>0.30</td><td>0.38</td></td<>	0.13 🍫	0.18	0.20	0.25	0.30	0.38
$0.10 \checkmark$ 0.15 0.18 0.23 0.25 0.30 0.36 $0.13 \bigstar$ 0.15 0.18 0.20 0.25 0.30 0.36 $0.10 \bigstar$ 0.15 0.18 0.20 0.25 0.30 0.36 $0.13 \bigstar$ 0.18 0.20 0.25 0.30 0.36 $0.13 \bigstar$ 0.15 0.18 0.23 0.25 0.28 $ -$	0.10 🛠	0.15	0.18	0.23	0.25	0.30
$0.10 \checkmark$ 0.15 0.18 0.23 0.25 0.30 0.36 $0.13 \bigstar$ 0.15 0.18 0.20 0.25 0.30 0.36 $0.10 \bigstar$ 0.15 0.18 0.20 0.25 0.30 0.36 $0.13 \bigstar$ 0.18 0.20 0.25 0.30 0.36 $0.13 \bigstar$ 0.15 0.18 0.23 0.25 0.28 $ -$	0.13 🛠	0.18	0.20	0.25	0.30	0.36
$0.13 \\ lllet$ 0.18 0.20 0.25 0.30 0.36 $0.10 \\ llett$ 0.15 0.18 0.23 0.25 0.30 0.36 $0.13 \\ llett$ 0.18 0.20 0.25 0.30 0.36 $0.13 \\ llett$ 0.15 0.18 0.23 0.25 0.30 $ -$						
$0.10 \checkmark$ 0.15 0.18 0.23 0.25 0.30 0.36 $0.13 \checkmark$ 0.15 0.18 0.20 0.25 0.30 0.36 $0.10 \checkmark$ 0.15 0.18 0.23 0.25 0.28 $ 0.08 \checkmark$ 0.13 0.18 0.25 0.36 0.43 0.48 0.51 0.15 0.25 0.36 0.41 0.48 0.51 0.13 0.28 0.36 0.43 0.46				(
0.13 0.18 0.20 0.25 0.30 0.36 0.10 0.15 0.18 0.23 0.25 0.28 $ 0.08$ 0.13 0.18 0.20 0.27 0.38 0.06 0.10 0.15 0.18 0.23 0.20 0.28 0.28 0.13 0.25 0.36 0.43 0.46 0.48 0.13 0.13 0.28 0.36 0.43 0.46 0.48 0.13 0.28 0.36 0.43 0.46 0.48 0.18						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					ĺ	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-	-	_	-	_
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		_	_	_	_	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0.12	0.19	-	-	0.29
0.15 0.25 0.36 0.43 0.48 0.51 0.13 0.23 0.30 0.41 0.46 0.48 0.13 0.20 0.25 0.36 0.41 0.46 0.48 0.13 0.20 0.25 0.36 0.41 0.43 0.43 0.10 0.15 0.20 0.25 0.33 0.33 0.33 0.10 0.13 0.15 0.20 0.25 0.33 0.33 0.10 0.13 0.15 0.20 0.25 0.33 0.33 0.10 0.13 0.15 0.20 0.25 0.25 0.18 0.28 0.36 0.43 0.46 0.48 0.18 0.28 0.36 0.41 0.43 0.48 0.18 0.28 0.36 0.41 0.43 0.48 0.13 0.23 0.30 0.41 0.43 0.48 0.13 0.23 0.30 0.41 0.43						
0.13 0.23 0.30 0.41 0.46 0.48 0.13 0.20 0.25 0.36 0.41 0.43 0.10 0.15 0.20 0.25 0.33 0.33 0.10 0.13 0.15 0.20 0.25 0.33 0.33 0.10 0.13 0.15 0.20 0.25 0.25 0.25 0.18 0.28 0.36 0.43 0.46 0.48 0.18 0.28 0.36 0.41 0.43 0.48 0.18 0.28 0.36 0.41 0.43 0.48 0.18 0.28 0.36 0.41 0.43 0.48 0.18 0.28 0.36 0.41 0.43 0.48 0.13 0.23 0.30 0.41 0.43 0.48 0.13 0.23 0.30 0.41 0.51 0.61 0.10 0.15 0.20 0.25 0.31 0.38 0.15			0.10			
0.13 0.20 0.25 0.36 0.41 0.43 0.10 0.15 0.20 0.25 0.33 0.33 0.10 0.13 0.15 0.20 0.25 0.33 0.33 0.10 0.13 0.15 0.20 0.25 0.25 0.25 0.18 0.28 0.36 0.43 0.46 0.48 0.18 0.28 0.36 0.41 0.43 0.48 0.18 0.28 0.36 0.41 0.43 0.48 0.18 0.28 0.36 0.41 0.43 0.48 0.18 0.28 0.36 0.41 0.43 0.48 0.13 0.23 0.30 0.41 0.43 0.48 0.13 0.23 0.30 0.41 0.51 0.61 0.10 0.15 0.20 0.25 0.31 0.38 0.15 0.25 0.36 0.43 0.53 0.63 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
0.10 0.15 0.20 0.25 0.33 0.33 0.10 0.13 0.15 0.20 0.25 0.25 0.18 0.28 0.36 0.43 0.46 0.48 0.18 0.28 0.36 0.41 0.43 0.48 0.18 0.28 0.36 0.41 0.43 0.48 0.18 0.28 0.36 0.41 0.43 0.48 0.18 0.28 0.36 0.41 0.43 0.48 0.13 0.23 0.30 0.41 0.43 0.48 0.13 0.23 0.30 0.41 0.51 0.61 0.10 0.15 0.20 0.25 0.31 0.38 0.15 0.25 0.36 0.43 0.53 0.63						
0.10 0.13 0.15 0.20 0.25 0.25 0.18 0.28 0.36 0.43 0.46 0.48 0.18 0.28 0.36 0.41 0.43 0.48 0.18 0.28 0.36 0.41 0.43 0.48 0.18 0.28 0.36 0.43 0.46 0.48 0.18 0.28 0.36 0.41 0.43 0.48 0.13 0.23 0.30 0.41 0.43 0.48 0.13 0.23 0.30 0.41 0.51 0.61 0.10 0.15 0.20 0.25 0.31 0.38 0.15 0.25 0.36 0.43 0.53 0.63						
0.18 0.28 0.36 0.43 0.46 0.48 0.18 0.28 0.36 0.41 0.43 0.48 0.18 0.28 0.36 0.41 0.43 0.48 0.18 0.28 0.36 0.43 0.46 0.48 0.18 0.28 0.36 0.41 0.43 0.48 0.18 0.28 0.36 0.41 0.43 0.48 0.13 0.23 0.30 0.41 0.51 0.61 0.10 0.15 0.20 0.25 0.31 0.38 0.15 0.25 0.36 0.43 0.53 0.63	-					
0.18 0.28 0.36 0.41 0.43 0.48 0.18 0.28 0.36 0.43 0.46 0.48 0.18 0.28 0.36 0.41 0.43 0.48 0.18 0.28 0.36 0.41 0.43 0.48 0.13 0.23 0.30 0.41 0.51 0.61 0.10 0.15 0.20 0.25 0.31 0.38 0.15 0.25 0.36 0.43 0.53 0.63	0.10	0.13	0.15	0.20	0.25	0.25
0.18 0.28 0.36 0.41 0.43 0.48 0.18 0.28 0.36 0.43 0.46 0.48 0.18 0.28 0.36 0.41 0.43 0.48 0.18 0.28 0.36 0.41 0.43 0.48 0.13 0.23 0.30 0.41 0.51 0.61 0.10 0.15 0.20 0.25 0.31 0.38 0.15 0.25 0.36 0.43 0.53 0.63	0.18	0.28	0.36	0.43	0.46	0.48
0.18 0.28 0.36 0.41 0.43 0.48 0.13 0.23 0.30 0.41 0.51 0.61 0.10 0.15 0.20 0.25 0.31 0.38 0.15 0.25 0.36 0.43 0.53 0.63						
0.13 0.23 0.30 0.41 0.51 0.61 0.10 0.15 0.20 0.25 0.31 0.38 0.15 0.25 0.36 0.43 0.53 0.63	0.18	0.28	0.36	0.43	0.46	0.48
0.10 0.15 0.20 0.25 0.31 0.38 0.15 0.25 0.36 0.43 0.53 0.63	0.18	0.28	0.36	0.41	0.43	0.48
0.15 0.25 0.36 0.43 0.53 0.63	0.13	0.23	0.30	0.41	0.51	0.61
	0.10	0.15	0.20	0.25	0.31	0.38
0.05 � 0.08 0.15 0.20 0.25 0.35	0.15	0.25	0.36	0.43	0.53	0.63
	0.05 🛠	0.08	0.15	0.20	0.25	0.35

Deep Hole Drilling Speed and Feed Adjustment

		A Holder Length									
	Extended	Long	Long Plus	XL	3XL						
Speed	0.90	0.85	0.80	0.80	0.75						
Feed	-	0.95	0.90	0.90	0.90						

Recommended Speed and Feed Example

If the recommended speed and feed is 50 M/min and 0.20 mm/ rev for a standard length holder, then the speed and feed using a 3XL holder in the same application would be 37.5 M/min and 0.18 mm/rev.

Form	ulas								
1.	RPM	= (318.47 • M/min) / DIA							
	where:								
	RPM	= revolutions per minute (rev/min)							
	M/min	= speed (M/min)							
	DIA	= diameter of drill (mm)							
2.	mm/min	= RPM • mm/rev							
	where:								
	mm/min	= mm per minute (mm/min)							
	RPM	= revolutions per minute (rev/min)							
	mm/rev	= feed rate (mm/rev)							
3.	M/min	= RPM • 0.003 • DIA							
	where:								
	M/min	= speed (M/min)							
	RPM	= revolutions per minute (rev/min)							
	DIA	= diameter of drill (mm)							

A WARNING Tool failure can cause serious injury. To prevent:

- When using holders without support bushing, use a short T-A[®] holder to establish an initial hole that is a minimum of 2 diameters deep.

- Do not rotate tool holder more than 50 RPM unless it is engaged with the workpiece or fixture.

T-A[®] Recommended Drilling Data | Metric (mm)

Carbide Inserts | Flat Bottom Geometry

				M/min			Feed Rate (mm/rev) by Diameter				
150	Material	Hardness (BHN)	Carbide Grade	Tin	TiAIN	TiCN	AM200®	9.50 mm - 12.95 mm	12.98 mm - 17.53 mm	17.54 mm - 24.38 mm	24.41 mm - 35.00 mm
130		. ,		82	110	98					
	Free-Machining Steel	100 - 150 150 - 200	C2 C2	73	94	98 85	126	0.17	0.26	0.32	0.39
	1118, 1215, 12L14, etc.		C2 C2	67	88	76	110	0.15	-		
	Law Carbon Steel	200 - 250		-		-	102	0.13	0.22	0.28	0.32
	Low-Carbon Steel	85 - 125	C2	79	102	94	117	0.17 *	0.22	0.28	0.37
	1010, 1020, 1025, 1522,	125 - 175	C2	67	88	76	102	0.15 *	0.22	0.28	0.35
	1144, etc.	175 - 225	C2	61	81	70	93	0.13 *	0.19	0.26	0.32
		225 - 275	C2	55	70	64	81	0.11 🛠	0.19	0.26	0.32
	Medium-Carbon Steel	125 - 175	C2	67	88	76	102	0.15	0.22	0.28	0.35
	1030, 1040, 1050, 1527,	175 - 225	C2	61	81	72	93	0.13	0.19	0.26	0.32
	1140, 1151, etc.	225 - 275	C2	55	70	61	81	0.13	0.19	0.26	0.32
		275 - 325	C2	46	61	53	70	0.11	0.17	0.24	0.30
Р	Alloy Steel	125 - 175	C2	64	85	75	99	0.15	0.22	0.28	0.35
	4140, 5140, 8640, etc.	175 - 225	C2	59	79	67	91	0.13	0.19	0.26	0.32
		225 - 275	C2	55	70	61	81	0.13	0.19	0.26	0.32
		275 - 325	C2	52	66	58	76	0.11	0.17	0.24	0.30
		325 - 375	C2	44	58	50	67	0.09	0.15	0.22	0.28
	High-Strength Alloy	225 - 300	C2	41	52	47	59	0.13 🛠	0.19	0.22	0.26
	4340, 4330V, 300M, etc.	300 - 350	C2	37	47	41	55	0.11 🛠	0.17	0.19	0.24
		350 - 400	C2	30	41	37	47	0.09 🛠	0.15	0.17	0.22
	Structural Steel	100 - 150	C2	62	81	72	93	0.17 🛠	0.24	0.30	0.35
	A36, A285, A516, etc.	150 - 250	C2	52	66	58	76	0.13 🛠	0.22	0.28	0.30
		250 - 350	C2	47	61	53	70	0.11 🛠	0.19	0.25	0.26
	Tool Steel	150 - 200	C2	41	58	49	67	0.09	0.15	0.19	0.24
	H-13, H-21, A-4, 0-2, S-3, etc.	200 - 250	C2	30	44	37	50	0.09	0.15	0.19	0.24
	High-Temp Alloy	140 - 220	C2	21	27	23	32	0.09 🛠	0.15	0.19	0.24
	Hastelloy B, Inconel 600, etc.	220 - 310	C2	15	21	18	24	0.09 🛠	0.13	0.17	0.22
s	Titanium Alloy	140 - 220	C2	26	33	28	40	0.08 🛠	0.14	0.17	0.20
5		220 - 310	C2	21	29	25	30	0.08 🛠	0.12	0.15	0.18
	Aerospace Alloy	185 - 275	C2	43	37	50	40	0.15 🛠	0.17	0.25	0.30
	S82	275 - 350	C2	33	28	38	32	0.13 🛠	0.15	0.23	0.25
	Stainless Steel 400 Series	185 - 275	C2	43	56	50	64	0.15 🛠	0.20	0.25	0.30
	416, 420, etc.	275 - 350	C2	33	43	38	49	0.13 🛠	0.18	0.23	0.25
	Stainless Steel 300 Series	135 - 185	C2	28	37	33	40	0.13 🛠	0.17	0.21	0.25
Μ	304, 316, 17-4PH, etc.	185 - 275	C2	21	28	25	32	0.11 🛠	0.15	0.19	0.21
	Super Duplex Stainless Steel	135 - 185	C2	22	29	26	33	0.10 🛠	0.14	0.17	0.20
		185 - 275	C2	17	22	19	26	0.08 🛠	0.12	0.15	0.17

* Contact our Application Engineering department for assistance when machining these materials

					M/min			Feed	Rate (mm/	rev) by Diam	eter
ISO	Material	Hardness (BHN)	Carbide Grade	Tin	TiAIN	TiCN	AM200 ®	9.50 mm - 12.95 mm	12.98 mm - 17.53 mm	17.54 mm - 24.38 mm	24.41 mm - 35.00 mm
150	Wear Plate	400	C2	20	31	26	39	0.06 *	0.10	0.16	0.20
		500	C2 C2	13	23	18	39	0.08 💸	0.10	0.16	0.20
	Hardox [®] , AR400, T-1, etc.			-		-	-			-	
Н		600	C2	10	19	14	25	0.03 🛠	0.06	0.10	0.13
	Hardened Steel	300 - 400	C2	30	38	34	41	0.08 🛠	0.14	0.18	0.22
		400 - 500	C2	18	22	20	33	0.06 🛠	0.12	0.16	0.18
	Nodular, Grey,	120 - 150	C2	82	120	108	137	0.17	0.26	0.32	0.41
	Ductile Cast Iron	150 - 200	C2	70	104	87	119	0.15	0.24	0.28	0.38
К		200 - 220	C2	61	94	79	108	0.13	0.19	0.26	0.32
		220 - 260	C2	55	81	67	93	0.11	0.17	0.24	0.28
		260 - 320	C2	47	70	58	81	0.11	0.15	0.22	0.24
	Cast Aluminum	30	C2	160	228	198	_	0.22	0.32	0.41	0.43
		180	C2	79	122	107	-	0.19	0.28	0.35	0.39
	Wrought Aluminum	30	C2	292	368	328	390	0.12	0.18	0.23	0.25
		180	C2	195	245	220	260	0.10	0.16	0.20	0.22
Ν	Aluminum Bronze	100 - 200	C2	73	95	85	105	0.10	0.16	0.20	0.29
		200 - 250	C2	55	81	68	87	0.08	0.12	0.14	0.20
	Brass	100	C2	112	160	138	185	0.12	0.18	0.22	0.30
	Copper	60	C2	68	105	85	117	0.04 🛠	0.06	0.08	0.12

* Contact our Application Engineering department for assistance when machining these materials

Deep Hole Drilling Speed and Feed Adjustment

		Á	🛕 Holder Length									
	Extended	Long	Long Plus	XL	3XL							
Speed	0.90	0.85	0.80	0.80	0.75							
Feed	-	0.95	0.90	0.90	0.90							

Recommended Speed and Feed Example

If the recommended speed and feed is 50 M/min and 0.20 mm/rev for a standard length holder, then the speed and feed using a 3XL holder in the same application would be 37.5 M/min and 0.18 mm/rev.

50 • 0.75 = 37.5 M/min

0.20 • 0.90 = 0.18 mm/rev

Formulas

1	. RPM	= (318.47 • M/min) / DIA	2.	mm/min	= RPM • mm/rev	3.	M/min	= RPM • 0.003 • DIA
	where:			where:			where:	
	RPM	= revolutions per minute (rev/min)		mm/min	= mm per minute (mm/min)		M/min	= speed (M/min)
	M/min	= speed (M/min)		RPM	= revolutions per minute (rev/min)		RPM	= revolutions per minute (rev/min)
	DIA	= diameter of drill (mm)		mm/rev	= feed rate (mm/rev)		DIA	= diameter of drill (mm)

• WARNING Tool failure can cause serious injury. To prevent:

- When using holders without support bushing, use a short T-A® holder to establish an initial hole that is a minimum of 2 diameters deep.

- Do not rotate tool holder more than 50 RPM unless it is engaged with the workpiece or fixture.

T-A[®] Recommended Drilling Data | Metric (mm)

Carbide Inserts | Diamond Coating

			M/min	Feed Rate (mm/rev) by Diameter				
	Material	Carbide Grade	Diamond Coating	9.5 mm - 12.5 mm	13 mm - 17.5 mm	18 mm - 24 mm	25 mm - 35 mm	
Polymer Matrix Composites	Carbon (hard)	N2	305 - 450	0.10 - 0.15	0.20 - 0.25	0.25 - 0.30	0.30 - 0.36	
	Carbon Fiber	N2	305 - 450	0.10 - 0.15	0.20 - 0.25	0.25 - 0.30	0.30 - 0.36	
	Carbon / Glass Fiber	N2	305 - 450	0.10 - 0.15	0.20 - 0.25	0.25 - 0.30	0.30 - 0.36	
	Fiberglass	N2	305 - 450	0.10 - 0.15	0.20 - 0.25	0.25 - 0.30	0.30 - 0.36	
	Graphite	N2	305 - 450	0.10 - 0.15	0.20 - 0.25	0.25 - 0.30	0.30 - 0.36	
	Plastics	N2	76 - 305	0.10 - 0.15	0.20 - 0.25	0.25 - 0.30	0.30 - 0.36	
	Epoxy Resin	N2	76 - 305	0.10 - 0.15	0.20 - 0.25	0.25 - 0.30	0.30 - 0.36	
	Bismaleimide Resin	N2	76 - 305	0.10 - 0.15	0.20 - 0.25	0.25 - 0.30	0.30 - 0.36	
	Polyester Resin	N2	76 - 305	0.10 - 0.15	0.20 - 0.25	0.25 - 0.30	0.30 - 0.36	
	Phenolic Resin	N2	76 - 305	0.10 - 0.15	0.20 - 0.25	0.25 - 0.30	0.30 - 0.36	
	Rubber	N2	76 - 305	0.10 - 0.15	0.20 - 0.25	0.25 - 0.30	0.30 - 0.36	
	Aluminum	N2	305	0.20	0.33	0.41	0.51	
	Si < 10%	N2	305	0.20	0.33	0.41	0.51	
	10% < Si < 15%	N2	259 - 305	0.20	0.33	0.41	0.51	
	15% < SI < 20%	N2	198 - 259	0.20	0.33	0.41	0.51	
1etal	20% < Si < 25%	N2	152 - 198	0.20	0.33	0.41	0.51	
Metal Matrix Composites	25% < Si	N2	61 - 152	0.20	0.33	0.41	0.51	
	Brass	N2	76 - 152	0.20	0.33	0.41	0.51	
	Bronze	N2	76 - 152	0.20	0.33	0.41	0.51	
	Copper	N2	30 - 76	0.10 - 0.15	0.20 - 0.25	0.25 - 0.30	0.30 - 0.36	
	Copper Alloys	N2	30 - 76	0.10 - 0.15	0.20 - 0.25	0.25 - 0.30	0.30 - 0.36	
	Lead Alloys	N2	30 - 76	0.10 - 0.15	0.20 - 0.25	0.25 - 0.30	0.30 - 0.36	
	Magnesium Alloys	N2	30 - 76	0.10 - 0.15	0.20 - 0.25	0.25 - 0.30	0.30 - 0.36	
	Precious Metals	N2	30 - 76	0.10 - 0.15	0.20 - 0.25	0.25 - 0.30	0.30 - 0.36	
Ceramic Matrix Composites	Carbide (green)	N2	15 - 76	0.10 - 0.15	0.20 - 0.25	0.25 - 0.30	0.30 - 0.36	
	Ceramic (green)	N2	15 - 76	0.10 - 0.15	0.20 - 0.25	0.25 - 0.30	0.30 - 0.36	
	Ceramic (pre-sintered)	N2	15 - 76	0.10 - 0.15	0.20 - 0.25	0.25 - 0.30	0.30 - 0.36	

Deep Hole Drilling Speed and Feed Adjustment

	🛆 Holder Length								
	Extended	Long	Long Plus	XL	3XL				
Speed	0.90	0.85	0.80	0.80	0.75				
Feed	-	0.95	0.90	0.90	0.90				

Recommended Speed and Feed Example

If the recommended speed and feed is 50 M/min and 0.20 mm/rev for a standard length holder, then the speed and feed using a 3XL holder in the same application would be 37.5 M/min and 0.18 mm/rev.

50 • 0.75 = 37.5 M/min

0.20 • 0.90 = 0.18 mm/rev

A WARNING Tool failure can cause serious injury. To prevent:

- When using holders without support bushing, use a short T-A® holder to establish an initial hole that is a minimum of 2 diameters deep.

- Do not rotate tool holder more than 50 RPM unless it is engaged with the workpiece or fixture.

Visit www.alliedmachine.com/DeepHoleGuidelines for the most up-to-date information and procedures. Factory technical assistance is available for your specific applications through our Application Engineering Team.

Notes

_			 		 	 		 	 	 		 	
_			 		 								
_		 	 		 	 		 	 	 		 	

Coolant Recommendations | Metric (mm)

HSS Drill Inserts

		Pressure or	9.5 mm -	13 mm -	18 mm -	25 mm -	36mm -	51 mm -	76 mm -
ISO	Material	Flow Rate	12.5 mm -	13 mm - 17 mm	24 mm	35 mm -	50 mm	76 mm	102 mm
100	Free-Machining Steel	BAR	12 - 13	7-8	7 - 10	6-8	5-7	4	5-6
	1118, 1215, 12L14, etc.	LPM	9.5 - 9.8	10.6 - 11.4	16.7 - 19.7	26.5 - 30.3	45.4 - 53.0	114 - 125	144 - 167
	Low-Carbon Steel	BAR	11 - 12	5 - 6	5 - 7	4 - 6	4 - 5	2-3	3 - 5
	1010, 1020, 1025, 1522, 1144, etc.	LPM	9.1 - 9.5	9.1 - 9.8	14.0 - 15.9	22.7 - 26.5	41.6 - 45.4	98 - 114	125 - 144
	Medium-Carbon Steel	BAR	11	5 - 6	5 - 6	4 - 5	3 - 5	2-3	3 - 5
	1030, 1040, 1050, 1527, 1140, 1151, etc.	LPM	8.7 - 9.1	8.7 - 9.8	13.6 - 15.5	18.9 - 22.7	37.9 - 45.4	98 - 114	125 - 144
	Alloy Steel	BAR	11	5	5 - 6	3 - 5	3 - 4	2	3
Ρ	4140, 5140, 8640, etc.	LPM	8.7 - 9.1	8.3 - 9.1	13.2 - 14.8	18.9 - 22.7	31.9 - 41.6	98 - 106	114 - 125
	High-Strength Alloy	BAR	10 - 11	4	3	2	2	1 - 2	2
	4340, 4330V, 300M, etc.	LPM	8.7 - 9.1	7.9 - 8.3	11.0 - 11.7	15.1 - 18.9	26.5 - 30.3	79 - 87	87 - 98
	Structural Steel	BAR	11	5 - 6	5 - 6	3 - 4	3	2	3
	A36, A285, A516, etc.	LPM	8.7 - 9.1	9.1 - 9.8	13.2 - 14.8	18.9 - 22.7	34.1 - 37.9	87 - 98	114 - 125
	Tool Steel	BAR	10 - 11	4	3	2	2	1 - 2	2
	H-13, H-21, A-4, 0-2, S-3, etc.	LPM	8.7 - 9.1	7.9 - 8.3	11.0 - 11.7	15.1 - 18.9	26.5 - 30.3	79 - 87	87 - 98
	High-Temp Alloy	BAR	10 - 11	4 - 5	3 - 4	2	2	2	3
	Hastelloy B, Inconel 600, etc.	LPM	8.7 - 9.1	8.3 - 8.7	11.7 - 12.1	15.1 - 18.9	26.5 - 30.3	87 - 98	125
	Titanium Alloy	BAR	10 - 11	4 - 5	3 - 4	2	2	2	3
S	······	LPM	8.7 - 9.1	8.3 - 8.7	11.7 - 12.1	15.1 - 18.9	26.5 - 30.3	87 - 98	125
	Aerospace Alloy	BAR	10 - 11	4 - 5	3 - 4	2	2	2	3
	S82	LPM	8.7 - 9.1	8.3 - 8.7	11.7 - 12.1	15.1 - 18.9	26.5 - 30.3	87 - 98	125
	Steinlass Steel 400 Corrise	DAD	11.0	5.0	5.2	2.0	25	2	2.1
	Stainless Steel 400 Series 416. 420. etc.	BAR LPM	11.8 9.5	5.9 9.8	5.2 14	3.8 23	3.5 38	2 98	3.1 117
	Stainless Steel 300 Series	BAR	9.5 11.8	5.9	5.2	3.8	3.5	2	3.1
Μ	304, 316, 17-4PH, etc.	LPM	9.5	9.8	14	23	3.5	98	117
	Super Duplex Stainless Steel	BAR	11.8	5.9	5.2	3.8	3.5	2	3.1
	Super Buplex Stamess Steel	LPM	9.5	9.8	14	23	38	98	117
						-			
	Wear Plate	BAR	10.7	4.2	3.5	2	2	1.7	2
Н	Hardox [®] , AR400, T-1, etc.	LPM	9.1	8.3	11.7	19	30	87	98
	Hardened Steel	BAR	10.7	4.2	3.5	2	2	1.7	2
		LPM	9.1	8.3	11.7	19	30	87	98
	SG / Nodular Cast Iron	BAR	11	4.5	4.2	2.8	2.4	2	2.4
1Z		LPM	9.1	8.7	12.5	19	34	98	106
К	Grey / White Iron	BAR	11	4.5	4.2	2.8	2.4	2	2.4
		LPM	9.1	8.7	12.5	19	34	98	106
	Cast Aluminum	BAR	14.5	12.4	15.8	11	8.6	3.5	5.5
		LPM	10	14	23	34	61	125	159
	Wrought Aluminum	BAR	14.5	12.4	15.8	11	8.6	3.5	5.5
		LPM	10	14	23	34	61	125	159
	Aluminum Bronze	BAR	12.8	8.3	9.65	7.95	6.9	3.5	6.2
Ν		LPM	9.6	11.4	19.7	30.3	53	125	167
	Brass	BAR	11	4.5	4.2	2.8	2.4	2	2.4
		LPM	9.1	8.7	12.5	19	34	98	106
	Copper	BAR	12.8	8.3	9.65	7.95	6.9	3.5	6.2
		LPM	9.6	11.4	19.7	30.3	53	125	167

Deep Hole Drilling Coolant Adjustment

		Â	Holder Leng	th	
	Extended	Long	Long Plus	XL	3XL
Pressure and Flow	1.3	1.5	2	2	3

Recommended Coolant Example

12 • 3 = 36 bar

If the recommended pressure and flow is 12 bar and 22 LPM for a standard length holder, then the adjusted pressure and flow for a 3XL holder would be 36 bar and 66 LPM.

22 • 3 = 66 LPM

A WARNING Tool failure can cause serious injury. To prevent:

- When using holders without support bushing, use a short T-A® holder to establish an initial hole that is a minimum of 2 diameters deep.

- Do not rotate tool holder more than 50 RPM unless it is engaged with the workpiece or fixture.

Visit www.alliedmachine.com/DeepHoleGuidelines for the most up-to-date information and procedures. Factory technical assistance is available for your specific applications through our Application Engineering Team.

IMPORTANT: The coolant pressure and flow rate recommendations above represent a good approximation to obtain optimum tool life and chip evacuation at Allied Machine recommended speeds and feeds. If lower coolant capabilities exist in a drilling application, the T-A[®] drilling system will still function at reduced penetration rates. Contact our Application Engineering department for a more specific recommendation of coolant requirements and/or speeds and feeds.

Coolant Recommendations | Metric (mm)

Carbide Drill Inserts

		Pressure or	9.5 mm -				
ISO	Material	Flow Rate	12.5 mm	13 mm - 17 mm	18 mm - 24 mm	25 mm - 35 mm	36 mm - 47 mm
	Free-Machining Steel	BAR	17 - 20	17	15	15	20
	1118, 1215, 12L14, etc.	LPM	12.2	16.3	25.2	41.5	71.9
	Low-Carbon Steel	BAR	18	11	11	12	9
	1010, 1020, 1025, 1522, 1144, etc.	LPM	11.4	13.3	20.6	36.5	62.0
	Medium-Carbon Steel	BAR	17	10	10	10	8
	1030, 1040, 1050, 1527, 1140, 1151, etc.	LPM	11.3	12.5	20.0	33.8	57.0
Р	Alloy Steel	BAR	17	9	10	8	7
	4140, 5140, 8640, etc.	LPM	11.1	12.3	19.3	30.0	55.8
	High-Strength Alloy	BAR	15	5	4	3	3
	4340, 4330V, 300M, etc.	LPM	10.4	9.1	12.6	18.8	33.6
	Structural Steel	BAR	16	9	8	7	5
	A36, A285, A516, etc.	LPM	10.8	12.0	17.5	27.8	47.1
	Tool Steel	BAR	15	5	5	3	3
	H-13, H-21, A-4, 0-2, S-3, etc.	LPM	10.4	9.1	13.6	19.7	36.5
	High-Temp Alloy	BAR	17	11	12	11	9
	Hastelloy B, Inconel 600, etc.	LPM	11.1	13.5	21.9	35.4	62.0
~	Titanium Alloy	BAR	17	11	12	11	9
S		LPM	11.1	13.5	21.9	35.4	62.0
	Aerospace Alloy	BAR	17	11	12	11	9
	S82	LPM	11.1	13.5	21.9	35.4	62.0
	Stainless Steel 400 Series	BAR	22.7	16.5	17.9	17.2	13.1
	416, 420, etc.	LPM	13	16.3	26.3	44.2	75
	Stainless Steel 300 Series	BAR	22.7	16.5	17.9	17.2	13.1
Μ	304, 316, 17-4PH, etc.	LPM	13	16.3	26.3	44.2	75
	Super Duplex Stainless Steel	BAR	22.7	16.5	17.9	17.2	13.1
	Super Duplex Stamless Steel	LPM	13	16.3	26.3	44.2	75
		1 1		1			
	Wear Plate	BAR	14.5	5.2	4.8	3.4	3.1
н	Hardox [®] , AR400, T-1, etc.	LPM	10.4	9.1	13.6	19.7	36.5
	Hardened Steel	BAR	14.5	5.2	4.8	3.4	3.1
		LPM	10.4	9.1	13.6	19.7	36.5
	SG / Nodular Cast Iron	BAR	15.5	7.2	6.2	6.2	5.5
	-	LPM	10.7	10.8	15.4	26.5	48.7
К	Grey / White Iron	BAR	15.5	7.2	6.2	6.2	5.5
	-	LPM	10.7	10.8	15.4	26.5	48.7
	Cast Aluminum	DAD	24.1	22	21.7	10.6	13.8
	Cast Aluminum	LPM	13.4	18.8	21.7	19.6 47.2	77
	Wrought Aluminum	BAR	24.1	22	29	19.6	13.8
		LPM	13.4	18.8	21.7	47.2	77
	Aluminum Bronze	BAR	20	16.5	16.5	15.2	12
Ν		LPM	12.2	16.3	25.2	41.5	71.9
	Brass	BAR	24.1	22	21.7	19.6	13.8
		LPM	13.4	18.8	21.7	47.2	77
	Copper	BAR	20	16.5	16.5	15.2	12
		LPM	12.2	16.3	25.2	41.5	71.9
			12.2	1 10.5	23.2		/1.5

Deep Hole Drilling Coolant Adjustment

		Â	Holder Leng	th	
	Extended	Long	Long Plus	XL	3XL
Pressure and Flow	1.3	1.5	2	2	3

Recommended Coolant Example

12 • 3 = 36 bar

If the recommended pressure and flow is 12 bar and 22 LPM for a	
standard length holder, then the adjusted pressure and flow for a	
3XL holder would be 36 bar and 66 LPM.	

22 • 3 = 66 LPM

• WARNING Tool failure can cause serious injury. To prevent:

- When using holders without support bushing, use a short T-A® holder to establish an initial hole that is a minimum of 2 diameters deep.

- Do not rotate tool holder more than 50 RPM unless it is engaged with the workpiece or fixture.

Visit www.alliedmachine.com/DeepHoleGuidelines for the most up-to-date information and procedures. Factory technical assistance is available for your specific applications through our Application Engineering Team.

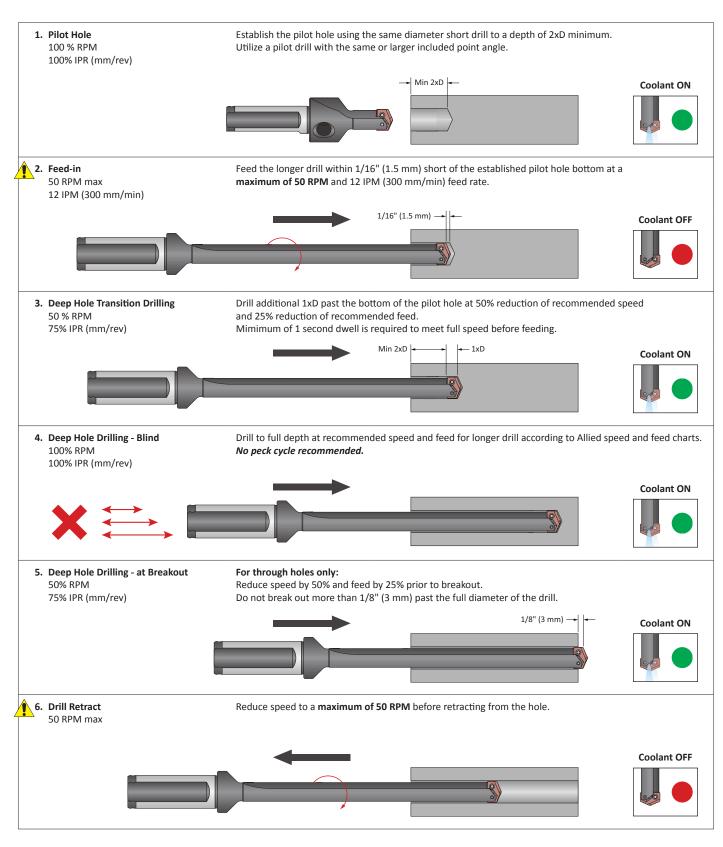
IMPORTANT: The coolant pressure and flow rate recommendations above represent a good approximation to obtain optimum tool life and chip evacuation at Allied Machine recommended speeds and feeds. If lower coolant capabilities exist in a drilling application, the T-A® drilling system will still function at reduced penetration rates. Contact our Application Engineering department for a more specific recommendation of coolant requirements and/or speeds and feeds.

Troubleshooting Guide

				-					Pot	enti	ial P	rob	lem				-					
	Accelerated corner wear	Barber pole	Bell-mouth hole	Insert chipping	Blue chips	Built-up Edge (BUE)	Chatter	Chip packing	Chipping of point	Damaged or broken tools	Excessive margin wear	High flank wear	Hole lead off	Hole out of position	Hole out of round	Notching of insert	Oversize hole	Poor hole finish	Poor tool life	Power spikes - Load meter	Step burned on insert	
Setup Condition	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	Possible Solutions
▲ Use of Standard, Standard Plus, Extended, Long, Long Plus, XL, and 3XL holders. See page 69 for Deep Hole Drilling guidelines.		2	3				7		9				13	14			17					 Start with short holder and drill a minimum depth equal to 2xD (see page 69 for instructions). Spot hole with stub tool of same or greater included angle as T-A[®] drill insert. Decrease feed a minimum of 50% until establishing full diameter. Use special holder with wear pads or chrome bearing area to work with drill bushings.
Starting on an inclined surface.		2					7		9	10	11		13		15							 Spot face surface to provide a flat entry surface. Spot hole with stub tool of same or greater included angle as T-A[®] drill insert. Decrease feed a minimum of 50% until establishing full diameter. Use special holder with wear pads or chrome bearing area to work with drill bushings.
Worn or misaligned spindle (lathe, screw machine, chucker).		2	3				7		9	10	11		13				17	18				 Align spindle and turret or tailstock. Repair spindle. Spot hole with stub tool of same or greater included angle as T-A[®] drill insert.
Use of low rigidity machine tools (radial drills, multi-spindle drill press, etc.).		2	3	4			7		9	10			13	14								 Spot hole with stub tool of same or greater included angle as T-A® drill insert. Reduce penetration rate to fall within the physical limits of the machine or setup (NOTICE: Do not reduce feed below threshold of good chip formation). Use special holder with wear pads or chrome bearing area to work with drill bushings. Use tougher tool steel grades with high wear-resistant coatings.
Poor work piece support.		2		4			7			10	11				15			18				 Provide additional support for the work piece. Reduce penetration rate to fall within the physical limits of the machine or setup (NOTICE: Do not reduce feed below threshold of good chip formation). Use tougher tool steel grades with high wear-resistant coatings.
Flood coolant, low coolant pressure or low coolant volume.	1				5	6		8		10		12					17	18	19	20	21	 Run coolant through tool holder when drilling greater than one times diameter. Increase coolant pressure and volume through the tool holder. Reduce penetration rate to fall within the coolant limitations (NOTICE: Do not reduce feed below threshold of good chip formation). Add a peck cycle to help clear chips.

A WARNING Tool failure can cause serious injury. To prevent:

- When using holders without support bushing, use a short T-A® holder to establish an initial hole that is a minimum of 2 diameters deep.


- Do not rotate tool holder more than 50 RPM unless it is engaged with the workpiece or fixture.

Visit www.alliedmachine.com/DeepHoleGuidelines for the most up-to-date information and procedures. Factory technical assistance is available for your specific applications through our Application Engineering Team.

									Pot	enti	al P	rob	lem									
	Accelerated corner wear	Barber pole	Bell-mouth hole	Insert chipping	Blue chips	Built-up Edge (BUE)	Chatter	Chip packing		Damaged or broken tools	Excessive margin wear	High flank wear	Hole lead off	Hole out of position	Hole out of round	Notching of insert	Oversize hole	Poor hole finish	Poor tool life	Power spikes - Load meter	Step burned on insert	
Setup Condition	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	Possible Solutions
Interrupted cuts. Entry or exit surfaces that are not perpendicular to the spindle (draft angles, stepped surfaces, cross holes, and cast or forged surfaces).				4			7		9	10	11		13	14	15		17	18	19			 Premill (spot face) entry or exit surface to remove interruption. Spot hole with stub tool of same or greater included angle as T-A[®] drill insert. Decrease feed as much as 50% through entry or exit interruption. Use short holders in low impact entry cuts.
Material harder than expected or running tools beyond recommended speeds.					5	6				10		12							19		21	 Reduce speed if a step is worn in the insert, calculate SFM at the worn diameter. Reduce this value by 10% and apply this new value to the original tool diameter. Increase coolant pressure and volume. Improve coolant condition by use of quality products and regular maintenance. Select an insert grade (premium, super cobalt, or carbide) or coating (TiAIN, TiCN, or AM200[®]) that is more wear-and heat-resistant.
Poor material micro-structure or foreign particles (forgings and castings that have not been normalized or annealed, poorly prepared steel, flame cut parts and sand casting).				4		6				10		12	13			16			19			 Compare performance of other tools for similar wear problems, which may indicate poor micro-structure. Anneal or normalize parts to improve micro-structure for machining. To improve tool life in materials with poor micro-structure, try carbide grades. For hard spots or inclusions, use the tougher insert steel grade with high wear-resistant coatings (TiAIN, TiCN, AM200[®]). Reduce feeds (NOTICE: Do not reduce feed below threshold of good chip formation).
Poor chip control.								8		10	11		13				17	18	19	20		 Increase feed to recommended levels. Contact Allied's Application Engineering team for technical recommendations. Increase coolant pressure and volume. Improve coolant condition by use of quality products and regular maintenance. See pages A30: 4 - 5 for special purpose geometries.
Spot drilled holes with included angle less than that matching T-A [®] or cored holes.	1			4			7						13			16			19			 Spot hole with short tool of same or greater included angle as T-A® drill insert. Reduce feed (NOTICE: Do not reduce feed below threshold of good chip formation) If possible, drill from solid.
Use of high wear-resistant insert grades.				4						10												 Use tougher grade of T-A[®] (from carbide to cobalt to HSS). See wear versus toughness chart on page A30: 9. Increase rigidity of setup.

Deep Hole Drilling Guidelines

For Lengths Greater Than 9xD (including Standard Plus, Extended Length, Long Length, Long Plus Length, XL, 3XL, and Special Length)

A WARNING Tool failure can cause serious injury. To prevent:

- When using holders without support bushing, use a short T-A® holder to establish an initial hole that is a minimum of 2 diameters deep.

- Do not rotate tool holder more than 50 RPM unless it is engaged with the workpiece or fixture.

Visit www.alliedmachine.com/DeepHoleGuidelines for the most up-to-date information and procedures. Factory technical assistance is available for your specific applications through our Application Engineering Team.

Notes

section A40

High Performance & Universal

Imperial		
High Performa	nce	 9 - 80
Universal		 31 - 82
Deep Hole Drilling	Guidelines	83

Recommended Cutting Data | Imperial (inch)

High Performance Spade Inserts

						F	eed Rate (IPR) by Diamete	r
ISO	Material	Hardness (BHN)	TiN SFM	TiAIN SFM	TiCN SFM	1" - 1-1/4"	1-1/4" - 2"	2" - 3"	3" - 5"
	Free-Machining Steel	100 - 150	200	280	260	0.016	0.020	0.023	0.028
	1118, 1215, 12L14, etc.	150 - 200	180	260	235	0.016	0.020	0.023	0.028
		200 - 250	160	240	210	0.016	0.020	0.023	0.028
	Low-Carbon Steel	85 - 125	170	250	220	0.015	0.019	0.023	0.027
	1010, 1020, 1025, 1522, 1144, etc.	125 - 175	160	240	210	0.015	0.019	0.023	0.027
		175 - 225	150	225	195	0.014	0.018	0.021	0.024
		225 - 275	140	210	180	0.014	0.018	0.021	0.024
	Medium-Carbon Steel	125 - 175	160	240	210	0.015	0.019	0.023	0.027
	1030, 1040, 1050, 1527, 1140, 1151, etc.	175 - 225	150	225	195	0.014	0.018	0.021	0.024
		225 - 275	140	210	180	0.014	0.018	0.021	0.024
		275 - 325	130	195	170	0.012	0.016	0.019	0.022
Р	Alloy Steel	125 - 175	150	210	195	0.014	0.017	0.019	0.022
r	4140, 5140, 8640, etc.	175 - 225	140	195	180	0.014	0.017	0.019	0.022
		225 - 275	130	180	170	0.014	0.017	0.019	0.022
		275 - 325	120	170	155	0.012	0.015	0.017	0.020
		325 - 375	110	155	145	0.012	0.015	0.017	0.020
	High-Strength Alloy	225 - 300	80	110	100	0.010	0.014	0.017	0.020
	4340, 4330V, 300M, etc.	300 - 350	60	85	80	0.010	0.014	0.017	0.020
		350 - 400	50	70	65	0.009	0.012	0.015	0.018
	Structural Steel	100 - 150	140	200	180	0.014	0.018	0.021	0.026
	A36, A285, A516, etc.	150 - 250	120	170	155	0.012	0.016	0.019	0.024
		250 - 350	100	140	130	0.010	0.014	0.017	0.020
	Tool Steel	150 - 200	80	110	105	0.010	0.012	0.015	0.017
	H-13, H-21, A-4, 0-2, S-3, etc.	200 - 250	60	90	85	0.010	0.012	0.015	0.017
6	High-Temp Alloy	140 - 220	30	40	35	0.010	0.012	0.015	-
S	Hastelloy B, Inconel 600, etc.	220 - 310	25	35	30	0.008	0.010	0.012	-
	Stainless Steel	135 - 185	75	105	95	0.011	0.014	0.016	0.020
Μ	303, 416, 420, 17-4 PH, etc.	185 - 275	60	90	80	0.010	0.012	0.014	0.018
	Cast Iron	120 - 150	170	250	220	0.020	0.024	0.027	0.030
		150 - 200	150	225	195	0.018	0.022	0.025	0.028
к		200 - 220	130	195	170	0.016	0.018	0.021	0.024
		220 - 260	110	165	145	0.012	0.014	0.017	0.020
		260 - 320	90	135	120	0.009	0.012	0.014	0.016
	Aluminum	30	600	850	750	0.020	0.022	0.025	0.025
Ν		180	300	450	400	0.018	0.022	0.025	0.025

Deep Hole Drilling Speed and Feed Adjustment

	🛦 Holde	r Length
	Long	XL
Speed	0.90	0.80
Feed	_	0.90

Recommended Speed and Feed Example

If the recommended speed and feed is 200 SFM and 0.016 IPR for a standard length holder, then the speed and feed using an XL holder in the same application would be 160 SFM and 0.014 IPR.

200 • 0.80 = 160 SFM

0.016 • 0.90 = 0.014 IPR

A WARNING Tool failure can cause serious injury. To prevent:

- When using holders without support bushing, use a short length holder to establish an initial hole that is a minimum of 2 diameters deep.

- Do not rotate tool holders more than 50 RPM unless it is engaged with the workpiece or fixture.

Refer to page 77 for Deep Hole Drilling Guidelines. Visit www.alliedmachine.com/DeepHoleGuidelines for the most up-to-date information and procedures. Factory technical assistance is available for your specific applications through our Application Engineering Team.

IMPORTANT: The speeds and feeds listed above are a general starting point for all applications. Refer to the Coolant Recommendation chart for coolant requirements to run at the recommended speeds and feeds. Factory technical assistance is available through our Application Engineering department. See adjustment examples above.

Coolant Recommendations | Imperial (inch)

High Performance Spade Inserts

				Data by	Diameter	
ISO	Material	Data Metrics	1" - 1-1/4"	1-1/4" - 2"	2" - 3"	3" - 5"
	Free-Machining Steel	Hardness (BHN)	100 - 250	100 - 250	100 - 250	100 - 250
	1118, 1215, 12L14, etc.	Coolant Pressure (PSI)	105 - 150	55 - 75	45 - 60	35 - 45
		Coolant Volumetric Flow Rate (GPM)	6.3 - 7.6	15 - 18	31 - 36	47 - 53
	Low-Carbon Steel	Hardness (BHN)	85 - 275	85 - 275	85 - 275	85 - 275
		Coolant Pressure (PSI)	80 - 115	45 - 55	35 - 45	30 - 35
		Coolant Volumetric Flow Rate (GPM)	5.5 - 6.6	14 - 15	28 - 31	43 - 46
	Medium-Carbon Steel	Hardness (BHN)	125 - 325	125 - 325	125 - 325	125 - 325
		Coolant Pressure (PSI)	70 - 100	40 - 50	35 - 40	30 - 35
		Coolant Volumetric Flow Rate (GPM)	5.2 - 6.2	13 - 15	28 - 30	43 - 46
	Alloy Steel	Hardness (BHN)	125 - 375	125 - 375	125 - 375	125 - 375
Р		Coolant Pressure (PSI)	60 - 85	30 - 40	30 - 35	25 - 30
		Coolant Volumetric Flow Rate (GPM)	4.8 - 5.7	11 - 13	26 - 28	39 - 43
	High-Strength Alloy	Hardness (BHN)	225 - 400	225 - 400	225 - 400	225 - 400
	4340, 4330V, 300M, etc.	Coolant Pressure (PSI)	25 - 30	20 - 25	20 - 25	20 - 25
		Coolant Volumetric Flow Rate (GPM)	3.1 - 3.4	9 - 10	21 - 23	35 - 39
	Structural Steel	Hardness (BHN)	100 - 350	100 - 350	100 - 350	100 - 350
	A36, A285, A516, etc.	Coolant Pressure (PSI)	50 - 70	30 - 35	25 - 30	25 - 30
		Coolant Volumetric Flow Rate (GPM)	4.4 - 5.2	11 - 12	23 - 26	39 - 43
	Tool-Steel	Hardness (BHN)	150 - 250	150 - 250	150 - 250	150 - 250
	H-13, H-21, A-4, 0-2, S-3, etc.	Coolant Pressure (PSI)	25 - 30	20 - 25	20 - 25	20 - 25
		Coolant Volumetric Flow Rate (GPM)	3.1 - 3.4	9 - 10	21 - 23	35 - 43
	High-Temp Alloy	Hardness (BHN)	140 - 310	140 - 310	140 - 310	140 - 310
S	Hastelloy B, Inconel 600, etc.	Coolant Pressure (PSI)	35 - 40	25 - 30	25 - 30	-
		Coolant Volumetric Flow Rate (GPM)	3.6 - 3.9	10 - 11	23 - 26	_
	Stainless Steel	Hardness (BHN)	135 - 275	135 - 275	135 - 275	135 - 275
Μ	303, 416, 420, 17-4 PH, etc.	Coolant Pressure (PSI)	50 - 65	30 - 35	25 - 30	25 - 30
		Coolant Volumetric Flow Rate (GPM)	4.4 - 5.0	11 - 12	23 - 26	39 - 43
	Cast Iron	Hardness (BHN)	120 - 320	120 - 320	120 - 320	120 - 320
Κ		Coolant Pressure (PSI)	40 - 50	25 - 30	25 - 30	20 - 25
		Coolant Volumetric Flow Rate (GPM)	3.9 - 4.4	10 - 11	23 - 26	35 - 43
	Aluminum	Hardness (BHN)	30 - 180	30 - 180	30 - 180	30 - 180
Ν		Coolant Pressure (PSI)	150 - 220	80 - 115	60 - 80	55 - 70
		Coolant Volumetric Flow Rate (GPM)	7.6 - 9.1	19 - 22	36 - 42	59 - 66

Deep Hole Drilling Speed and Feed Adjustment

	Å Holde	er Length
	Long	XL
Pressure and Flow	1.3	2

Recommended Speed and Feed Example

If the recommended pressure and flow is 150 PSI and 6.3 GPM for a						
standard length holder, then the adjusted pressure and flow using an						
XL holder in the same application would be 300 PSI and 12.6 GPM.						
150 • 2 = 300 PSI	63 • 2 = 12 6 GPM					

MARNING Tool failure can cause serious injury. To prevent:

- When using holders without support bushing, use a short length holder to establish an initial hole that is a minimum of 2 diameters deep.

- Do not rotate tool holders more than 50 RPM unless it is engaged with the workpiece or fixture.

Refer to page 77 for Deep Hole Drilling Guidelines. Visit www.alliedmachine.com/DeepHoleGuidelines for the most up-to-date information and procedures. Factory technical assistance is available for your specific applications through our Application Engineering Team.

IMPORTANT: The coolant pressure and flow rate recommendation below represents a good approximation to obtain optimum tool life and chip evacuation at the recommended speeds and feeds. If lower coolant capabilities exist in a drilling application, the HP/Universal drilling system will still function at reduced penetration rates. Contact our Application Engineering department for more specific recommendations of coolant requirements and/or speeds and feeds.

Recommended Cutting Data | Imperial (inch)

Universal Spade Inserts

					Feed Rate (IPF	R) by Diameter	
ISO	Material	Hardness (BHN)	SFM	1" - 1-1/4"	1-1/4" - 2"	2" - 3"	3" - 5"
	Free-Machining Steel	100 - 150	100	0.014	0.016	0.020	0.024
	1118, 1215, 12L14, etc.	150 - 200	90	0.013	0.015	0.019	0.022
		200 - 250	80	0.012	0.014	0.018	0.020
	Low-Carbon Steel	85 - 125	80	0.012	0.015	0.018	0.020
	1010, 1020, 1025, 1522, 1144, etc.	125 - 175	75	0.012	0.014	0.017	0.020
		175 - 225	60	0.010	0.014	0.016	0.018
		225 - 275	55	0.010	0.013	0.016	0.018
	Medium-Carbon Steel	125 - 175	65	0.010	0.014	0.018	0.020
	1030, 1040, 1050, 1527, 1140, 1151, etc.	175 - 225	60	0.010	0.014	0.016	0.020
		225 - 275	50	0.008	0.013	0.016	0.018
		275 - 325	45	0.008	0.012	0.014	0.016
Р	Alloy Steel	125 - 175	60	0.010	0.014	0.018	0.020
P	4140, 5140, 8640, etc.	175 - 225	55	0.010	0.014	0.016	0.020
		225 - 275	45	0.008	0.013	0.016	0.018
		275 - 325	35	0.008	0.012	0.014	0.016
		325 - 375	30	0.008	0.012	0.014	0.016
	High-Strength Alloy	225 - 300	40	0.008	0.012	0.014	0.016
	4340, 4330V, 300M, etc.	300 - 350	30	0.006	0.010	0.014	0.016
		350 - 400	25	0.006	0.008	0.014	0.016
	Structural Steel	100 - 150	70	0.012	0.016	0.018	0.020
	A36, A285, A516, etc.	150 - 250	60	0.010	0.014	0.016	0.018
		250 - 350	50	0.008	0.012	0.014	0.016
	Tool-Steel	150 - 200	50	0.009	0.011	0.014	0.016
	H-13, H-21, A-4, 0-2, S-3, etc.	200 - 250	40	0.008	0.010	0.013	0.015
	High-Temp Alloy	140 - 220	20	0.008	0.010	0.012	_
S	Hastelloy B, Inconel 600, etc.	220 - 310	15	0.007	0.009	0.011	_
	Stainless Steel	135 - 185	45	0.008	0.012	0.015	0.018
Μ	303, 416, 420, 17-4 PH, etc.	185 - 275	35	0.007	0.012	0.013	0.016
	Cast Iron	120 - 150	100	0.016	0.020	0.022	0.025
		150 - 200	80	0.016	0.020	0.022	0.025
к		200 - 220	70	0.015	0.018	0.020	0.022
Ň		200 - 220	60	0.001	0.014	0.018	0.020
		260 - 320	45	0.008	0.012	0.015	0.017
		200-320	45	0.008	0.010	0.012	0.014
N	Aluminum	30	275	0.018	0.026	0.032	0.042
		180	200	0.018	0.026	0.032	0.042

Deep Hole Drilling Speed and Feed Adjustment

	Á Holde	er Length
	Long	XL
Speed	0.90	0.80
Feed	-	0.90

Recommended Speed and Feed Example

If the recommended speed and feed is 100 SFM and 0.016 IPR for a standard length holder, then the speed and feed using an XL holder in the same application would be 80 SFM and 0.014 IPR.

100 • 0.80 = 80 SFM

0.016 • 0.90 = 0.014 IPR

A WARNING Tool failure can cause serious injury. To prevent:

- When using holders without support bushing, use a short length holder to establish an initial hole that is a minimum of 2 diameters deep.

- Do not rotate tool holders more than 50 RPM unless it is engaged with the workpiece or fixture.

Refer to page page 77 for Deep Hole Drilling Guidelines. Visit **www.alliedmachine.com/DeepHoleGuidelines** for the most up-to-date information and procedures. Factory technical assistance is available for your specific applications through our Application Engineering Team.

IMPORTANT: The speeds and feeds listed above are a general starting point for all applications. Refer to the Coolant Recommendation chart for coolant requirements to run at the recommended speeds and feeds. Factory technical assistance is available through our Application Engineering department. See adjustment examples on the following page.

Coolant Recommendations | Imperial (inch)

Universal Spade Inserts

				Data by I	Diameter	I
ISO	Material	Data Metrics	1" - 1-1/4"	1-1/4" - 2"	2" - 3"	3" - 5"
	Free-Machining Steel	Hardness (BHN)	100 - 250	100 - 250	100 - 250	100 - 250
	1118, 1215, 12L14, etc.	Coolant Pressure (PSI)	40	25	25	20
		Coolant Volumetric Flow Rate (GPM)	3.9	10	23	35
	Low-Carbon Steel	Hardness (BHN)	85 - 275	85 - 275	85 - 275	85 - 275
		Coolant Pressure (PSI)	30	20	20	20
		Coolant Volumetric Flow Rate (GPM)	3.4	9	21	35
	Medium-Carbon Steel	Hardness (BHN)	125 - 325	125 - 325	125 - 325	125 - 325
		Coolant Pressure (PSI)	25	20	20	20
		Coolant Volumetric Flow Rate (GPM)	3.1	9	21	35
	Alloy Steel	Hardness (BHN)	125 - 375	125 - 375	125 - 375	125 - 375
Р		Coolant Pressure (PSI)	20	20	20	20
		Coolant Volumetric Flow Rate (GPM)	2.8	9	21	35
	High-Strength Alloy	Hardness (BHN)	225 - 400	225 - 400	225 - 400	225 - 400
	4340, 4330V, 300M, etc.	Coolant Pressure (PSI)	25	20	20	20
		Coolant Volumetric Flow Rate (GPM)	3.1	9	21	35
	Structural Steel	Hardness (BHN)	100 - 350	100 - 350	100 - 350	100 - 350
	A36, A285, A516, etc.	Coolant Pressure (PSI)	25	20	20	20
		Coolant Volumetric Flow Rate (GPM)	3.1	9	21	35
	Tool Steel	Hardness (BHN)	150 - 250	150 - 250	150 - 250	150 - 250
	H-13, H-21, A-4, 0-2, S-3, etc.	Coolant Pressure (PSI)	25	20	20	20
		Coolant Volumetric Flow Rate (GPM)	3.1	9	21	35
	High-Temp Alloy	Hardness (BHN)	140 - 310	140 - 310	140 - 310	140 - 310
S	Hastelloy B, Inconel 600, etc.	Coolant Pressure (PSI)	25	20	20	20
		Coolant Volumetric Flow Rate (GPM)	3.1	9	21	35
	Stainless Steel	Hardness (BHN)	135 - 275	135 - 275	135 - 275	135 - 275
Μ	303, 416, 420, 17-4 PH, etc.	Coolant Pressure (PSI)	25	25	20	20
		Coolant Volumetric Flow Rate (GPM)	3.1	10	21	35
	Cast Iron	Hardness (BHN)	120 - 320	120 - 320	120 - 320	120 - 320
К		Coolant Pressure (PSI)	25	20	20	20
		Coolant Volumetric Flow Rate (GPM)	3.1	9	21	35
	Aluminum	Hardness (BHN)	30 - 180	30 - 180	30 - 180	30 - 180
Ν		Coolant Pressure (PSI)	55	35	30	30
		Coolant Volumetric Flow Rate (GPM)	4.6	12	26	40

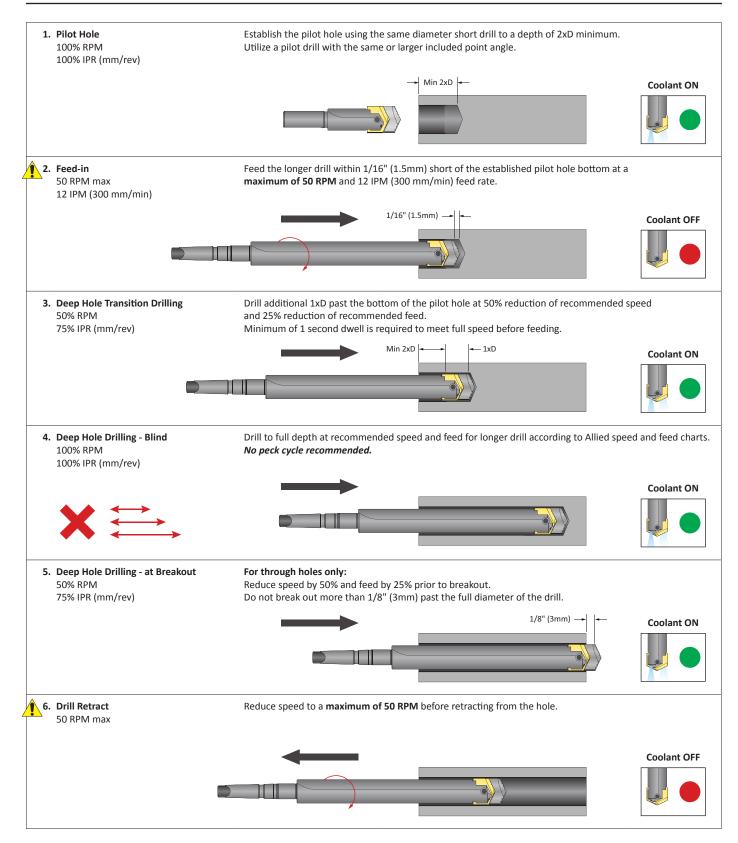
Deep Hole Drilling Speed and Feed Adjustment

	🛓 Holde	er Length
	Long	XL
Pressure and Flow	1.3	2

Recommended Speed and Feed Example

If the recommended pressure and flow is 150 PSI and 6.3 GPM for a						
standard length holder, then the adjusted pressure and flow using an						
XL holder in the same application would be 300 PSI and 12.6 GPM.						
150 • 2 = 300 PSI	63 • 2 = 12 6 GPM					

MARNING Tool failure can cause serious injury. To prevent:


- When using holders without support bushing, use a short length holder to establish an initial hole that is a minimum of 2 diameters deep.

- Do not rotate tool holders more than 50 RPM unless it is engaged with the workpiece or fixture.

Refer to page 77 for Deep Hole Drilling Guidelines. Visit www.alliedmachine.com/DeepHoleGuidelines for the most up-to-date information and procedures. Factory technical assistance is available for your specific applications through our Application Engineering Team.

IMPORTANT: The coolant pressure and flow rate recommendation below represents a good approximation to obtain optimum tool life and chip evacuation at the recommended speeds and feeds. If lower coolant capabilities exist in a drilling application, the HP/Universal drilling system will still function at reduced penetration rates. Contact our Application Engineering department for more specific recommendations of coolant requirements and/or speeds and feeds.

Deep Hole Drilling Guidelines

A WARNING Tool failure can cause serious injury. To prevent:

- When using holders without support bushing, use a short length holder to establish an initial hole that is a minimum of 2 diameters deep.

- Do not rotate tool holders more than 50 RPM unless it is engaged with the workpiece or fixture.

Visit www.alliedmachine.com/DeepHoleGuidelines for the most up-to-date information and procedures. Factory technical assistance is available for your specific applications through our Application Engineering Team.

Notes

_			 		 	 		 	 	 		 	
_			 		 								
_		 	 		 	 		 	 	 		 	

section A50

APX[™] Drill

Imperial		. 87
Metric		. 88
Deep Hole Drilling (Guidelines	. 89

Recommended Drilling Data | Imperial (inch)

			Feed Rate (IPR) by Diameter								
			Outbo	ard Insert	5/16" IC	3/8" IC	1/2" IC	9/16" IC	3/8" IC	1/2" IC	9/16" IC
			S	eries	33	38 - 44	44 - 51	51 - 57 - 63	70	76 - 83	89 - 95
ISO	Material	Hardness (BHN)	Speed (SFM)	Pilot Style	1.299" - 1.495"	1.496" - 1.885"	1.886" - 2.210"	2.211" - 2.755"	2.756" - 2.992"	2.992" - 3.503"	3.504" - 4.000"
	Free-Machining Steel 1118, 1215, 12L14, etc.	100 - 250	450 - 750	T-A/GEN3SYS	.006011	.007012	.009012	.009012	.006010	.007011	.007012
	Low-Carbon Steel 1010, 1020, 1025, 1522, 1144, etc.	85 - 275	450 - 750	T-A/GEN3SYS	.006011	.007012	.009012	.009012	.006010	.007011	.007012
	Medium-Carbon Steel 1030, 1040, 1050, 1527, 1140, 1151, etc.	125 - 325	450 - 750	T-A/GEN3SYS	.006011	.007012	.009012	.009012	.006010	.007011	.007012
Р	Alloy Steel 4140, 5140, 8640, etc.	125 - 375	400 - 700	T-A/GEN3SYS	.005007	.005009	.007010	.007011	.005009	.006010	.006010
	High-Strength Alloy 4340, 4330V, 300M, etc.	225 - 400	300 - 500	T-A/GEN3SYS	.005006	.005007	.005008	.006009	.005007	.005008	.006008
	Structural Steel A36, A285, A516, etc.	100 - 350	450 - 750	T-A/GEN3SYS	.006008	.007009	.008010	.009011	.005009	.006010	.007010
	Tool Steel H-13, H-21, A-4, O-2, S-3, etc.	150 - 250	300 - 500	T-A/GEN3SYS	.005006	.005007	.007009	.008010	.005007	.006009	.007010
	High-Temp Alloy Hastelloy B, Inconel 600, etc.	140 - 310	200 - 400	T-A	.004005	.004007	.006009	.007009	.004006	.005007	.005007
S	Titanium Alloy	140 - 310	300 - 500	T-A	.005007	.006008	.007009	.008010	.004006	.005007	.005007
	Aerospace Alloy S82	185 - 350	400 - 600	T-A/GEN3SYS	.004006	.005007	.006008	.006008	.004006	.005007	.005007
	Stainless Steel 400 Series 416, 420, etc.	185 - 350	300 - 500	T-A/GEN3SYS	.006008	.007009	.008010	.009011	.005007	.007009	.007010
М	Stainless Steel 300 Series 304, 316, 17-4PH, etc.	135 - 275	300 - 500	T-A/GEN3SYS	.005007	.006008	.007009	.008010	.004008	.006010	.006010
	Super Duplex Stainless Steel	135 - 275	250 - 450	T-A/GEN3SYS	.004006	.005007	.007009	.007009	.004007	.006009	.007010
н	Wear Plate Hardox®, AR400, T-1, etc.	400 - 600	300 - 500	T-A	.003005	.004006	.006008	.007009	.003005	.004006	.004006
	Hardened Steel	300 - 500	300 - 500	T-A	.004005	.005006	.006008	.006008	.003005	.004006	.004006
К	Nodular, Grey, Ductile Cast Iron	120 - 320	500 - 800	T-A/GEN3SYS	.005009	.006010	.008012	.010012	.008010	.009011	.010012
	Cast Aluminum	30 - 180	600 - 800	T-A/GEN3SYS	.009012	.010014	.012016	.012016	.006009	.008011	.008012
	Wrought Aluminum	30 - 180	600 - 800	T-A/GEN3SYS	.007011	.008012	.010014	.010014	.006009	.008011	.008012
Ν	Aluminum Bronze	100 - 250	400 - 700	T-A/GEN3SYS	.005007	.005008	.007010	.009011	.006009	.007010	.008012
	Brass	30 - 100	800	T-A/GEN3SYS	.006008	.007009	.008010	.009012	.006008	.007009	.008012
	Copper	60	700	T-A/GEN3SYS	.002005	.003006	.006008	.008010	.006008	.006008	.006008

Coolant Recommendations

Series	Pressure (PSI)	Flow Rate (GPM)
33	350	10
38	300	10
44	275	12
51	250	18
57	225	20
63	200	22
70	150	25
76	100	28
83	100	30
89	100	33
95	100	33

Calculations

Value	Formula
SFM	RPM • 0.262 • Diameter
RPM	(SFM • 3.82) / Diameter
IPM	RPM • IPR

IMPORTANT: The speeds and feeds listed above are a general starting point for all applications. Refer to the Coolant Recommendation charts for coolant requirements to run at the recommended speeds and feeds. Factory technical assistance is also available through our Application Engineering Team. *ext:* **7611** | *email:* **appeng@alliedmachine.com**

IMPORTANT: The coolant pressure and flow rate recommendations above represent a good approximation to obtain optimum tool life and chip evacuation at Allied Machine recommended speeds and feeds. If lower coolant capabilities exist in a drilling application, the APX Drilling System will still function at reduced penetration rates. Contact our Application Engineering department for a more specific recommendation of coolant requirements and/or speeds and feeds.

1 WARNING Tool failure can cause serious injury. To prevent: For APX holders 8xD or longer, do not rotate tool more than 50 RPM unless it is engaged with workpiece or fixture. Refer to page 83 for Deep Hole Drilling Guidelines in this section of the catalog. Visit www.alliedmachine.com/DeepHoleGuidelines for the most up-to-date information and procedures. Factory technical assistance is also available for your specific applications.

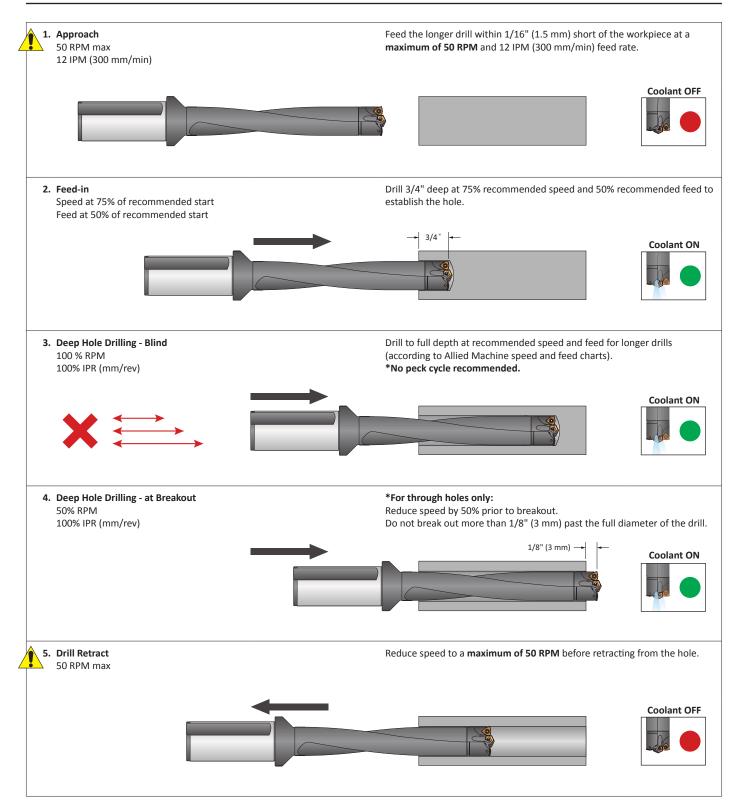
Recommended Drilling Data | Metric (mm)

				Feed Rate (mm/rev) by Diameter								
			Outbo	ard Insert	5/16" IC	3/8" IC	1/2" IC	9/16" IC	3/8" IC	1/2" IC	9/16" IC	
			S	eries	33	38 - 44	44 - 51	51 - 57 - 63	70	76 - 83	89 - 95	
ISO	Material	Hardness (BHN)	Speed (M/min)	Pilot Style	33.00 mm - 37.99 mm	38.00 mm - 47.88 mm	47.89 mm - 56.13 mm	56.14 mm - 69.99 mm	70.00 mm - 75.99 mm	76.00 mm - 88.99 mm	89.00 mm - 101.60 mm	
	Free-Machining Steel 1118, 1215, 12L14, etc.	100 - 250	137 - 229	T-A/GEN3SYS	0.15 - 0.28	0.18 - 0.30	0.23 - 0.30	0.23 - 0.30	0.15 - 0.25	0.18 - 0.28	0.18 - 0.30	
	Low-Carbon Steel 1010, 1020, 1025, 1522, 1144, etc.	85 - 275	137 - 229	T-A/GEN3SYS	0.15 - 0.28	0.18 - 0.30	0.23 - 0.30	0.23 - 0.30	0.15 - 0.25	0.18 - 0.28	0.18 - 0.30	
	Medium-Carbon Steel 1030, 1040, 1050, 1527, 1140, 1151, etc.	125 - 325	137 - 229	T-A/GEN3SYS	0.15 - 0.28	0.18 - 0.30	0.23 - 0.30	0.23 - 0.30	0.15 - 0.25	0.18 - 0.28	0.18 - 0.30	
Ρ	Alloy Steel 4140, 5140, 8640, etc.	125 - 375	122 - 213	T-A/GEN3SYS	0.13 - 0.18	0.13 - 0.23	0.18 - 0.25	0.18 - 0.28	0.13 - 0.23	0.15 - 0.25	0.15 - 0.25	
	High-Strength Alloy 4340, 4330V, 300M, etc.	225 - 400	91 - 152	T-A/GEN3SYS	0.13 - 0.15	0.13 - 0.18	0.13 - 0.20	0.15 - 0.23	0.13 - 0.18	0.13 - 0.20	0.15 - 0.20	
	Structural Steel A36, A285, A516, etc.	100 - 350	137 - 229	T-A/GEN3SYS	0.15 - 0.20	0.18 - 0.23	0.20 - 0.25	0.23 - 0.28	0.13 - 0.23	0.15 - 0.25	0.15 - 0.25	
	Tool Steel H-13, H-21, A-4, 0-2, S-3, etc.	150 - 250	91 - 152	T-A/GEN3SYS	0.13 - 0.15	0.13 - 0.18	0.18 - 0.23	0.20 - 0.25	0.13 - 0.18	0.15 - 0.23	0.18 - 0.25	
	High-Temp Alloy Hastelloy B, Inconel 600, etc.	140 - 310	61 - 122	T-A	0.10 - 0.13	0.10 - 0.18	0.15 - 0.23	0.18 - 0.23	0.10 - 0.15	0.13 - 0.18	0.13 - 0.18	
S	Titanium Alloy	140 - 310	91 - 152	T-A	0.13 - 0.18	0.15 - 0.20	0.18 - 0.23	0.20 - 0.25	0.10 - 0.15	0.13 - 0.18	0.13 - 0.18	
	Aerospace Alloy S82	185 - 350	122 - 183	T-A/GEN3SYS	0.10 - 0.15	0.13 - 0.18	0.15 - 0.20	0.15 - 0.20	0.10 - 0.15	0.13 - 0.18	0.13 - 0.18	
	Stainless Steel 400 Series 416, 420, etc.	185 - 350	91 - 152	T-A/GEN3SYS	0.15 - 0.20	0.18 - 0.23	0.20 - 0.25	0.23 - 0.28	0.13 - 0.18	0.18 - 0.23	0.18 - 0.25	
М	Stainless Steel 300 Series 304, 316, 17-4PH, etc.	135 - 275	91 - 152	T-A/GEN3SYS	0.13 - 0.18	0.15 - 0.20	0.18 - 0.23	0.20 - 0.25	0.10 - 0.20	0.15 - 0.25	0.15 - 0.25	
	Super Duplex Stainless Steel	135 - 275	76 - 137	T-A/GEN3SYS	0.10 - 0.15	0.13 - 0.18	0.18 - 0.23	0.18 - 0.23	0.10 - 0.18	0.15 - 0.23	0.18 - 0.25	
н	Wear Plate Hardox [®] , AR400, T-1, etc.	400 - 600	91 - 152	T-A	0.07 - 0.13	0.10 - 0.15	0.15 - 0.20	0.18 - 0.23	0.08 - 0.13	0.10 - 0.15	0.10 - 0.15	
	Hardened Steel	300 - 500	91 - 152	T-A	0.10 - 0.13	0.13 - 0.15	0.15 - 0.20	0.15 - 0.20	0.08 - 0.13	0.10 - 0.20	0.10 - 0.20	
К	Nodular, Grey, Ductile Cast Iron	120 - 320	152 - 244	T-A/GEN3SYS	0.13 - 0.23	0.15 - 0.25	0.20 - 0.30	0.25 - 0.30	0.20 - 0.25	0.23 - 0.28	0.25 - 0.30	
	Cast Aluminum	30 - 180	183 - 244	T-A/GEN3SYS	0.23 - 0.30	0.25 - 0.36	0.30 - 0.40	0.30 - 0.40	0.15 - 0.23	0.20 - 0.28	0.20 - 0.30	
	Wrought Aluminum	30 - 180	183 - 244	T-A/GEN3SYS	0.18 - 0.28	0.20 - 0.30	0.25 - 0.36	0.25 - 0.36	0.15 - 0.23	0.20 - 0.28	0.20 - 0.30	
Ν	Aluminum Bronze	100 - 250	123 - 213	T-A/GEN3SYS	0.13 - 0.18	0.13 - 0.20	0.18 - 0.25	0.23 - 0.28	0.15 - 0.23	0.18 - 0.25	0.20 - 0.30	
	Brass	30 - 100	244	T-A/GEN3SYS	0.15 - 0.20	0.18 - 0.23	0.20 - 0.25	0.23 - 0.30	0.15 - 0.20	0.18 - 0.23	0.20 - 0.25	
	Copper	60	213	T-A/GEN3SYS	0.05 - 0.13	0.08 - 0.15	0.15 - 0.20	0.20 - 0.25	0.08 - 0.15	0.15 - 0.20	0.15 - 0.20	

Coolant Recommendations

Series	Pressure (BAR)	Flow Rate (LPM)
33	24	38
38	21	38
44	19	45
51	17	68
57	16	76
63	14	83
70	10	95
76	7	106
83	7	114
89	7	125
95	7	125

Calculations


Value	Formula
M/min	RPM • 0.003 • Diameter
RPM	(M/min • 318.47) / Diameter
mm/min	RPM • mm/rev

IMPORTANT: The speeds and feeds listed above are a general starting point for all applications. Refer to the Coolant Recommendation charts for coolant requirements to run at the recommended speeds and feeds. Factory technical assistance is also available through our Application Engineering Team. *ext:* **7611** | *email:* appeng@alliedmachine.com

IMPORTANT: The coolant pressure and flow rate recommendations above represent a good approximation to obtain optimum tool life and chip evacuation at Allied Machine recommended speeds and feeds. If lower coolant capabilities exist in a drilling application, the APX Drilling System will still function at reduced penetration rates. Contact our Application Engineering department for a more specific recommendation of coolant requirements and/or speeds and feeds.

1 WARNING Tool failure can cause serious injury. To prevent: For APX holders 8xD or longer, do not rotate tool more than 50 RPM unless it is engaged with workpiece or fixture. Refer to page 83 for Deep Hole Drilling Guidelines in this section of the catalog. Visit www.alliedmachine.com/DeepHoleGuidelines for the most up-to-date information and procedures. Factory technical assistance is also available for your specific applications.

Deep Hole Drilling Guidelines

A WARNING Tool failure can cause serious injury. To prevent: NEVER rotate these tool holders more than 50 RPM without proper engagement with a workpiece or fixture. Failure to do so could result in tool failure and/or personal injury. Visit www.alliedmachine.com/DeepHoleGuidelines for the most up-to-date information and procedures. Factory technical assistance is also available for your specific applications. ext: 7611 | email: appeng@alliedmachine.com

Notes

1														

SECTION A55

4TEX[®] Drill

Imperial			93
Metric			
Insert Geometry Reco	ommendatior	ns	
Troubleshooting Guid	le		96

Recommended Drilling Data | Imperial (inch)

			:	Speed (SFM)	F	eed Rate (IPR) by D	iameter - 2xD, 3xD*	*
		Hardness	РКН	м	N	03, 04 Series	05 Series	06, 07 Series	09, 11, 14 Series
ISO	Material	(BHN)	AM480	AM485	TiCN	(0.472" - 0.610")	(0.611" - 0.728")	(0.729" - 1.043")	(1.044" - 1.850")
	Free-Machining Steel	100-150	400 - 1200	400 - 1200	-	0.0025 - 0.004	0.0025 - 0.005	0.003 - 0.0055	0.003 - 0.0055
	1118, 1215, 12L14, etc.	150-200	400 - 1000	400 - 1000	-	0.0025 - 0.004	0.0025 - 0.005	0.003 - 0.0055	0.003 - 0.0055
		200-250	400 - 800	400 - 800	-	0.0025 - 0.004	0.0025 - 0.005	0.003 - 0.0055	0.003 - 0.0055
	Low-Carbon Steel	85-125	400 - 1000	400 - 1000	-	0.0025 - 0.004	0.0025 - 0.005	0.003 - 0.0055	0.003 - 0.0055
	1010, 1020, 1025, 1522,	125-175	400 - 1000	400 - 1000	-	0.0025 - 0.004	0.0025 - 0.005	0.003 - 0.0055	0.003 - 0.0055
	1144, etc.	175-225	400 - 800	400 - 800	-	0.0025 - 0.004	0.0025 - 0.005	0.003 - 0.0055	0.003 - 0.0055
		225-275	400 - 800	400 - 800	-	0.0025 - 0.004	0.0025 - 0.005	0.003 - 0.0055	0.003 - 0.0055
	Medium-Carbon Steel	125-175	330 - 800	330 - 800	-	0.0015 - 0.0055	0.0025 - 0.0065	0.003 - 0.008	0.003 - 0.008
	1030, 1040, 1050, 1527, 1140,	175-225	330 - 800	330 - 800	-	0.0015 - 0.0055	0.0025 - 0.0065	0.003 - 0.008	0.003 - 0.008
	1151, etc.	225-275	330 - 800	330 - 800	-	0.0015 - 0.0055	0.0025 - 0.0065	0.003 - 0.008	0.003 - 0.008
		275-325	330 - 600	330 - 600	-	0.0015 - 0.0055	0.0025 - 0.0065	0.003 - 0.008	0.003 -0 .008
•	Alloy Steel	125-175	330 - 800	-	-	0.0015 - 0.0055	0.0025 - 0.0065	0.003 - 0.008	0.003 - 0.008
Р	4140, 5140, 8640, etc.	175-225	330 - 800	-	-	0.0015 - 0.0055	0.0025 - 0.0065	0.003 - 0.008	0.003 - 0.008
		225-275	330 - 800	-	-	0.0015 - 0.0055	0.0025 - 0.0065	0.003 - 0.008	0.003 - 0.008
		275-325	330 - 800	-	-	0.0015 - 0.0055	0.0025 - 0.0065	0.003 - 0.008	0.003 - 0.008
		325-375	330 - 800	-	-	0.0015 - 0.0055	0.0025 - 0.0065	0.003 - 0.008	0.003 - 0.008
	High-Strength Alloy	225-300	330 - 600	-	-	0.0015 - 0.0055	0.0025 - 0.0065	0.003 - 0.008	0.003 - 0.008
	4340, 4330V, 300M, etc.	300-350	330 - 600	-	-	0.0015 - 0.0055	0.0025 - 0.0065	0.003 - 0.008	0.003 - 0.008
		350-400	330 - 600	-	-	0.0015 - 0.0055	0.0025 - 0.0065	0.003 - 0.008	0.003 - 0.008
	Structural Steel	100-150	330 - 600	330 - 600	-	0.0015 - 0.0055	0.0025 - 0.0065	0.003 - 0.008	0.003 - 0.008
	A36, A285, A516, etc.	150-250	330 - 600	330 - 600	-	0.0015 - 0.0055	0.0025 - 0.0065	0.003 - 0.008	0.003 - 0.008
		250-350	330 - 600	-	-	0.0015 - 0.0055	0.0025 - 0.0065	0.003 - 0.008	0.003 - 0.008
	Tool Steel	150-200	270 - 600	270 - 600	-	0.0015 - 0.003	0.0025 - 0.005	0.003 - 0.006	0.003 - 0.006
	H-13, H-21, A-4, 0-2, S-3, etc.	200-250	270 - 600	-	-	0.0015 - 0.003	0.0025 - 0.005	0.003 - 0.006	0.003 - 0.006
	High-Temp Alloy*	140 - 220	100 - 250	100 - 250	_	0.002 - 0.003	0.002 - 0.003	0.0025 - 0.004	0.0025 - 0.004
	Hastelloy B, Inconel 600, etc.	220 - 310	100 - 200	100 - 200	_	0.002 - 0.003	0.002 - 0.003	0.0025 - 0.004	0.0025 - 0.004
	Titanium Alloy*	140 - 220	140 - 500	140 - 500	-	0.002 - 0.003	0.002 - 0.003	0.0025 - 0.004	0.0025 - 0.004
S	,	220 - 310	140 - 300	140 - 300	-	0.002 - 0.003	0.002 - 0.003	0.0025 - 0.004	0.0025 - 0.004
	Aerospace Alloy*	185 - 275	100 - 250	100 - 250	-	0.002 - 0.003	0.002 - 0.003	0.0025 - 0.004	0.0025 - 0.004
	S82	275 - 350	100 - 200	100 - 200	-	0.002 - 0.003	0.002 - 0.003	0.0025 - 0.004	0.0025 - 0.004
		105 075				0.0045 0.004	0.0005 0.005	0.0005 0.0055	0.0005 0.0055
	Stainless Steel 400 Series	185 - 275	240 - 600	240 - 700	-	0.0015 - 0.004	0.0025 - 0.005	0.0025 - 0.0055	0.0025 - 0.0055
	416, 420, etc.	275 - 350	240 - 470	240 - 500	-	0.0015 - 0.004	0.0025 - 0.005	0.0025 - 0.0055	0.0025 - 0.0055
Μ	Stainless Steel 300 Series	135 - 185	240 - 600	240 - 700	-	0.0015 - 0.004	0.0025 - 0.005	0.0025 - 0.0055	0.0025 - 0.0055
	304, 316, 17-4PH, etc.	185 - 275	240 - 470	240 - 500	-	0.0015 - 0.004	0.0025 - 0.005	0.0025 - 0.0055	0.0025 - 0.0055
	Super Duplex Stainless Steel	135 - 185	240 - 600	240 - 700	-	0.0015 - 0.004	0.0025 - 0.005	0.0025 - 0.0055	0.0025 - 0.0055
		185 - 275	240 - 470	240 - 500	-	0.0015 - 0.004	0.0025 - 0.005	0.0025 - 0.0055	0.0025 - 0.0055
	Wear Plate	400	100 - 200	-	-	0.0015 - 0.003	0.0025 - 0.005	0.003 - 0.006	0.003 - 0.006
	Hardox, AR400, T-1, etc.	500	100 - 200	-	-	0.0015 - 0.003	0.0025 - 0.005	0.003 - 0.006	0.003 - 0.006
Н		600	100 - 200	-	-	0.0015 - 0.003	0.0025 - 0.005	0.003 - 0.006	0.003 - 0.006
	Hardened Steel	300 - 400	100 - 300	-	-	0.0015 - 0.003	0.0025 - 0.005	0.003 - 0.006	0.003 - 0.006
		400 - 500	100 - 200	-	-	0.0015 - 0.003	0.0025 - 0.005	0.003 - 0.006	0.003 - 0.006
	Nodular, Grey, Ductile Cast Iron	120 - 150	300 - 800	_	_	0.003 - 0.0055	0.003 - 0.007	0.003 - 0.008	0.003 - 0.008
		150 - 200	300 - 800	_	_	0.003 - 0.0055	0.003 - 0.007	0.003 - 0.008	0.003 - 0.008
К		200 - 220	300 - 500	_	_	0.003 - 0.0055	0.003 - 0.007	0.003 - 0.008	0.003 - 0.008
Ň		220 - 260	270 - 400	_	_	0.003 - 0.0055	0.003 - 0.007	0.003 - 0.008	0.003 - 0.008
		260 - 320	270 - 400	-	_	0.003 - 0.0055	0.003 - 0.007	0.003 - 0.008	0.003 - 0.008
			1						1
	Cast Aluminum	30	-	-	800 - 2000	0.0025 - 0.005	0.003 - 0.0055	0.003 - 0.0065	0.003 - 0.008
		180	-	-	800 - 2000	0.0025 - 1.005	0.003 - 0.0055	0.003 - 0.0065	0.003 - 0.008
	Wrought Aluminum	30	-	-	800 - 2000	0.0025 - 0.005	0.003 - 0.0055	0.003 - 0.0065	0.003 - 0.008
Ν		180	-	-	800 - 2000	0.0025 - 0.005	0.003 - 0.0055	0.003 - 0.0065	0.003 - 0.008
	Aluminum Bronze	100 - 200	500 - 1000	-	500 - 1000	0.0025 - 0.005	0.003 - 0.0055	0.003 - 0.0065	0.003 - 0.008
	P	200 - 250	500 - 1000	-	500 - 1000	0.0025 - 0.005	0.003 - 0.0055	0.003 - 0.0065	0.003 - 0.008
	Brass	100	500 - 1000	-	500 - 1000	0.0025 - 0.005	0.003 - 0.0055	0.003 - 0.0065	0.003 - 0.008
	Copper	60	-	-	500 - 1000	0.0025 - 0.005	0.003 - 0.0055	0.003 - 0.0065	0.003 - 0.008

*For high-temp materials, 1000 PSI is recommended as well as a quality synthetic coolant at approximately 10% emulsion. **For 4xD tools, begin at low end of feed recommendation.

IMPORTANT: The speeds and feeds listed above are a general starting point for all applications. Factory technical assistance is also available through our Application Engineering Team. *ext:* **7611** | *email:* appeng@alliedmachine.com

Recommended Drilling Data | Metric (mm)

			Sp	eed (M/mi	in)	Fe	eed Rate (mm/rev) by	Diameter - 2xD, 3xD	**
		Hardness	P K H	м	N	03, 04 Series	05 Series	06, 07 Series	09, 11, 14 Series
ISO	Material	(BHN)	AM480	AM485	TiCN	(12.00 mm - 15.49 mm)	(15.50 mm - 18.49 mm)	(18.50 mm - 26.49 mm)	(26.50 mm - 47.00 mm)
	Free-Machining Steel	100 - 150	125 - 365	125 - 365	-	0.07 - 0.1	0.07 - 0.12	0.08 - 0.14	0.08 - 0.14
	1118, 1215, 12L14, etc.	150 - 200		125 - 305	-	0.07 - 0.1	0.07 - 0.12	0.08 - 0.14	0.08 - 0.14
		200 - 250	125 - 245	125 - 245	-	0.07 - 0.1	0.07 - 0.12	0.08 - 0.14	0.08 - 0.14
	Low-Carbon Steel	85 - 125	125 - 305	125 - 305	-	0.07 - 0.1	0.07 - 0.12	0.08 - 0.14	0.08 - 0.14
	1010, 1020, 1025, 1522,	125 - 175	125 -305	125 - 305	-	0.07 - 0.1	0.07 - 0.12	0.08 - 0.14	0.08 - 0.14
	1144, etc.	175 - 225	125 - 245	125 - 245	-	0.07 - 0.1	0.07 - 0.12	0.08 - 0.14	0.08 - 0.14
		225 - 275	125 - 245	125 - 245	-	0.07 - 0.1	0.07 - 0.12	0.08 - 0.14	0.08 - 0.14
	Medium-Carbon Steel	125 - 175	100 - 245	100 - 245	-	0.05 - 0.14	0.07 - 0.17	0.08 - 0.21	0.08 - 0.21
	1030, 1040, 1050, 1527, 1140,	175 - 225	100 - 245	100 - 245	-	0.05 - 0.14	0.07 - 0.17	0.08 - 0.21	0.08 - 0.21
	1151, etc.	225 - 275	100 - 245	100 - 245	-	0.05 - 0.14	0.07 - 0.17	0.08 - 0.21	0.08 - 0.21
		275 - 325	100 - 245	100 - 185	-	0.05 - 0.14	0.07 - 0.17	0.08 - 0.21	0.08 - 0.21
	Alloy Steel	125 - 175	100 - 245	-	-	0.05 - 0.14	0.07 - 0.17	0.08 - 0.21	0.08 - 0.21
Р	4140, 5140, 8640, etc.	175 - 225	100 - 245	-	-	0.05 - 0.14	0.07 - 0.17	0.08 - 0.21	0.08 - 0.21
		225 - 275	100 - 245	-	-	0.05 - 0.14	0.07 - 0.17	0.08 - 0.21	0.08 - 0.21
		275 - 325	100 - 245	-	-	0.05 - 0.14	0.07 - 0.17	0.08 - 0.21	0.08 - 0.21
		325 - 375	100 - 245	-	-	0.05 - 0.14	0.07 - 0.17	0.08 - 0.21	0.08 - 0.21
	High-Strength Alloy	225 - 300	100 - 165	_	_	0.05 - 0.14	0.07 - 0.17	0.08 - 0.21	0.08 - 0.21
	4340, 4330V, 300M, etc.	300 - 350	100 - 185	-	-	0.05 - 0.14	0.07 - 0.17	0.08 - 0.21	0.08 - 0.21
		350 - 400	100 - 185	-	-	0.05 - 0.14	0.07 - 0.17	0.08 - 0.21	0.08 - 0.21
	Structural Steel	100 - 150	100 - 185	100 - 185	-	0.05 - 0.13	0.07 - 0.13	0.08 - 0.13	0.08 - 0.13
	A36, A285, A516, etc.	150 - 250	100 - 185	100 - 185	-	0.05 - 0.13	0.07 - 0.13	0.08 - 0.13	0.08 - 0.13
		250 - 350	100 - 185	-	-	0.05 - 0.13	0.07 - 0.13	0.08 - 0.13	0.08 - 0.13
	Tool Steel	150 - 200	85 - 185	85 - 185	-	0.05 - 0.08	0.07 - 0.12	0.08 - 0.15	0.08 - 0.15
	H-13, H-21, A-4, 0-2, S-3, etc.	200 - 250	85 - 185	-	-	0.05 - 0.08	0.07 - 0.12	0.08 - 0.15	0.08 - 0.15
	High-Temp Alloy*	140 - 220	30 - 80	30 - 80	-	0.06 - 0.08	0.06 - 0.08	0.07 - 0.1	0.07 - 0.1
	Hastelloy B, Inconel 600, etc.	220 - 310	30 - 60	30 - 60	-	0.06 - 0.08	0.06 - 0.08	0.07 - 0.1	0.07 - 0.1
s	Titanium Alloy*	140 - 220	40 - 155	40 - 155	-	0.06 - 0.08	0.06 - 0.08	0.07 - 0.1	0.07 - 0.1
2		220 - 310	40 - 90	40 - 90	-	0.06 - 0.08	0.06 - 0.08	0.07 - 0.1	0.07 - 0.1
	Aerospace Alloy*	185 - 275	30 - 80	30 - 80	-	0.06 - 0.08	0.06 - 0.08	0.07 - 0.1	0.07 - 0.1
	S82	275 - 350	30 - 60	31 - 60	-	0.06 - 0.08	0.06 - 0.08	0.07 - 0.1	0.07 - 0.1
	Stainless Steel 400 Series	185 - 275	75 - 185	75 - 215	_	0.05 - 0.1	0.07 - 0.12	0.07 - 0.14	0.07 - 0.14
	416, 420, etc.	275 - 350	75 - 145	75 - 155	-	0.05 - 0.1	0.07 - 0.12	0.07 - 0.14	0.07 - 0.14
м	Stainless Steel 300 Series	135 - 185	75 - 185	75 - 215	-	0.05 - 0.1	0.07 - 0.12	0.07 - 0.14	0.07 - 0.14
	304, 316, 17-4PH, etc.	185 - 275	75 - 145	75 - 155	-	0.05 - 0.1	0.07 - 0.12	0.07 - 0.14	0.07 - 0.14
	Super Duplex Stainless Steel	135 - 185	75 - 185	75 - 215	-	0.05 - 0.1	0.07 - 0.12	0.07 - 0.14	0.07 - 0.14
	• •	185 - 275	75 - 145	75 - 155	-	0.05 - 0.1	0.07 - 0.12	0.07 - 0.14	0.07 - 0.14
	Wear Plate	400	30 - 60	_	_	0.05 - 0.08	0.07 - 0.12	0.08 - 0.15	0.08 - 0.15
	Hardox, AR400, T-1, etc.	500	30 - 60	_	_	0.05 - 0.08	0.07 - 0.12	0.08 - 0.15	0.08 - 0.15
Н		600	30 - 60	_	-	0.05 - 0.08	0.07 - 0.12	0.08 - 0.15	0.08 - 0.15
	Hardened Steel	300 - 400	30 - 90	_	-	0.05 - 0.08	0.07 - 0.12	0.08 - 0.15	0.08 - 0.15
		400 - 500	30 - 60	-	-	0.05 - 0.08	0.07 - 0.12	0.08 - 0.15	0.08 - 0.15
	Nodular, Grey,	120 - 150	90 - 245	_	-	0.08 - 0.14	0.08 - 0.19	0.08 - 0.21	0.08 - 0.21
	Ductile Cast Iron	150 - 200	90 - 245	_	_	0.08 - 0.14	0.08 - 0.19	0.08 - 0.21	0.08 - 0.21
к		200 - 220	90 - 155	_	-	0.08 - 0.14	0.08 - 0.19	0.08 - 0.21	0.08 - 0.21
		220 - 260	80 - 125	_	-	0.08 - 0.14	0.08 - 0.19	0.08 - 0.21	0.08 - 0.21
		260 - 320	80 - 125	_	-	0.08 - 0.14	0.08 - 0.19	0.08 - 0.21	0.08 - 0.21
	Cast Aluminum	30	_	_	245 - 610	0.07 - 0.12	0.08 - 0.14	0.08 - 0.17	0.08 - 0.21
		180	_	_	245 - 610	0.07 - 0.12	0.08 - 0.14	0.08 - 0.17	0.08 - 0.21
	Wrought Aluminum	30			245 - 610	0.07 - 0.12	0.08 - 0.14	0.08 - 0.17	0.08 - 0.21
		180			245 - 610	0.07 - 0.12	0.08 - 0.14	0.08 - 0.17	0.08 - 0.21
Ν	Aluminum Bronze	100 - 200	150 - 305		150 - 305	0.07 - 0.12	0.08 - 0.14	0.08 - 0.17	0.08 - 0.21
	Addition DI UIIZE	200 - 250	150 - 305	_	150 - 305	0.07 - 0.12	0.08 - 0.14	0.08 - 0.17	0.08 - 0.21
	Brass	100	150 - 305		150 - 305	0.07 - 0.12	0.08 - 0.14	0.08 - 0.17	0.08 - 0.21
	Copper	60		_	150 - 305	0.07 - 0.12	0.08 - 0.14	0.08 - 0.17	0.08 - 0.21
	41 F -								

*For high-temp materials, 70 bar is recommended as well as a quality synthetic coolant at approximately 10% emulsion. **For 4xD tools, begin at low end of feed recommendation.

IMPORTANT: The speeds and feeds listed above are a general starting point for all applications. Factory technical assistance is also available through our Application Engineering Team. *ext:* 7611 | *email:* appeng@alliedmachine.com

Insert Geometry Recommendations

					Geometry		
150	Material	Hardness (BHN)	Р	M	к	N	н
130	Free-Machining Steel	100 - 150	F		ĸ	IN	
	1118, 1215, 12L14, etc.	150 - 200	•	0			
		200 - 250	•	0			
	Low-Carbon Steel	85 - 125	0	•			
	1010, 1020, 1025, 1522, 1144, etc.	125 - 175	0	•			
		175 - 225	0	•			
	Medium-Carbon Steel	225 - 275 125 - 175	•	0			
	1030, 1040, 1050, 1527, 1140, 1151, etc.	175 - 225	0	•			
	1000, 1010, 1000, 1027, 1110, 1101, 000.	225 - 275	•	0			
		275 - 325	•				0
Р	Alloy Steel	125 - 175	0	•			
	4140, 5140, 8640, etc.	175 - 225	•	0			
		225 - 275 275 - 325	•				0
		325 - 375	0				 ●
	High-Strength Alloy	225 - 300	•				
	4340, 4330V, 300M, etc.	300 - 350	0				•
		350 - 400	0				•
	Structural Steel	100 - 150	0	•			
	A36, A285, A516, etc.	150 - 250	0	•			
	Tool Stool	250 - 350	•				0
	Tool Steel H-13, H-21, A-4, 0-2, S-3, etc.	150 - 200 200 - 250	•	0			0
			-				
	High-Temp Alloy* Hastelloy B, Inconel 600, etc.	140 - 220 220 - 310	0	•			
	Titanium Alloy*	140 - 220	0	•			
S	include a local state of the second state of t	220 - 310	0	•			
	Aerospace Alloy*	185 - 275	0	•			
	S82	275 - 350	0	•			
	Stainless Steel 400 Series	185 - 275	0				
	416, 420, etc.	275 - 350	0	•			
Μ	Stainless Steel 300 Series	135 - 185	0	•			
	304, 316, 17-4PH, etc. Super Duplex Stainless Steel	185 - 275	0	•			
	Super Duplex Stainless Steel	135 - 275	0	•			
			-	–			
	Wear Plate Hardox, AR400, T-1, etc.	400 500	0				•
Н		600	0				•
	Hardened Steel	300 - 400	0				•
		400 - 500	0				•
	Nodular, Ductile Cast Iron	120 - 150	•	0			
		150 - 200	•	0			
		200 - 220	•	0			
		220 - 260			•		0
К	Grow / White Iren	260 - 320			•		0
	Grey / White Iron	120 - 150 150 - 200			•		0
		200 - 220			•		<u> </u>
		220 - 260			•		
		260 - 320					
	Cast Aluminum	30				•	
		180				٠	
	Wrought Aluminum	30				٠	
N	Aluminum Dans	180				•	
	Aluminum Bronze	100 - 200	0			•	
	Brass	200 - 250 100	0			•	
	Copper	60	Ĭ	1		•	
	le en la la su		1			*	

Troubleshooting

1.	Starting on Uneven Surfaces • Reduce entry feed by 50% if necessary
2.	 Starting on Angled Surfaces Reduce entry feed by 20 - 50% Use lower rake geometry if insert chipping occurs
3.	 Angled Bore Exit Reduce entry feed by 50% on breakout Use tough insert and stable corner radius
4.	 Starting on Convex Surfaces Reduce entry feed by 50% Use lower rake geometry if insert chipping occurs
5.	 Drilling Through a Cross Hole Reduce feed rate 50% if necessary Use good coolant flow and monitor chip packing Use lower rake geometry if insert chipping occurs
6.	 Drilling on a Groove or Large Centering Box Reduce entry feed Use lower rake geometry for center insert
7.	 Chain Drilling Use good coolant flow Reduce feed rate by 50% for interrupted cut Use lower rake geometry if insert chipping occurs
8.	Starting on an EdgeReduce entry feed rate by 50%Use lower rake geometry if insert chipping occurs
9.	 Starting on a Welded Seam Reduce entry feed rate by 50% Use lower rake geometry if insert chipping occurs
10.	 Drilling Through Stacked Plates Not recommended
11.	Opening an Existing Hole Use flood coolant

Revolution Drill®

Imperial		9
Metric		0

Recommended Cutting Data | Imperial (inch)

				Speed (SFM)		
ISO	Material	Hardness (BHN)	AM300®	AM200®	TiN	Feed Rate (IPR)
	Free-Machining Steel 1118, 1215, 12L14, etc.	100 - 250	900 - 1300	850 - 1200	700 - 900	.0035007
	Low-Carbon Steel 1010, 1020, 1025, 1522, 1144, etc.	85 - 275	850 - 1250	800 - 1150	650 - 850	.0030065
	Medium-Carbon Steel 1030, 1040, 1050, 1527, 1140, 1151, etc.	125 - 325	800 - 1050	750 - 950	600 - 850	.00350065
Р	Alloy Steel 4140, 5140, 8640, etc.	125 - 375	750 - 1000	700 - 900	600 - 850	.00350065
	High-Strength Alloy 4340, 4330V, 300M, etc.	225 - 400	600 - 850	550 - 750	400 - 650	.003005
	Structural Steel A36, A285, A516, etc.	100 - 350	850 - 1050	800 - 950	650 - 850	.0030065
	Tool Steel H-13, H-21, A-4, 0-2, S-3, etc.	150 - 250	400 - 800	350 - 700	250 - 650	.0025005
S	High-Temp Alloy Hastelloy B, Inconel 600, etc.	140 - 310	250 - 450	250 - 350	150 - 300	.0025005
	Stainless Steel 400 Series 416, 420, etc.	185 - 350	600 - 850	550 - 750	400 - 650	.003006
Μ	Stainless Steel 300 Series 304, 316, 17-4PH, etc.	135 - 275	600 - 850	550 - 750	400 - 650	.003006
	Super Duplex Stainless Steel	135 - 275	500 - 750	450 - 650	300 - 550	.002005
К	Nodular, Grey, Ductile Cast Iron	120 - 320	700 - 900	650 - 800	500 - 700	.004008
	Cast Aluminum	30 - 180	1250 - 1650	1200 - 1550	950 - 1100	.006012
Ν	Wrought Aluminum	30 - 180	1250 - 1650	1200 - 1550	950 - 1100	.006012
	Brass	30 - 100	950 - 1350	900 - 1250	750 - 1100	.005009

Material Constants

				1. RPM	= (3.82 • SFM) / DIA
Type of Material	Hardness (BHN)	K _m (Ibs/in²)		where: RPM SFM	= revolutions per minute (rev/min) = speed (ft/min)
Free-Machining Steel	100 - 250	0.75		DIA	= diameter of drill (inch)
Low-Carbon Steel	85 - 275	0.85		DIA	
Medium-Carbon Steel	125 - 325	0.90		2. HP	= (0.6676 • DIA ² • IPR • RPM • K _m) / 0.80
Alloy Steel	125 - 375	1.00		where:	
High-Strength Steel	225 - 400	1.15		Tool Power	= tool power (HP)
Structural Steel	100 - 350	1.00		DIA	= diameter of drill (inch)
Tool Steel	150 - 250	0.90		IPR	= feed rate (in/rev)
High-Temperature Alloy	140 - 310	1.44		RPM	= revolutions per minute (rev/min)
Titanium Alloy	140 - 310	0.72		K _m	= specific cutting energy (lbs/in ²)
Aerospace Alloy	185 - 350	0.70			machine efficiency (using 0.80 as constant)
Stainless Steel 400 Series	185 - 350	1.08		3. Thrust	= 148,500 • IPR • DIA • K _m
Stainless Steel 300 Series	135 - 275	0.94		where:	
Super Duplex Stainless Steel	135 - 275	0.94		Thrust	= axial thrust (lbs)
Wear Plate	400 - 600	1.60		IPR	= feed rate (in/rev)
Hardened Steel	300 - 500	1.40		DIA	= diameter of drill (inch)
Nodular, Ductile Cast Iron	120 - 320	0.65		K _m	= specific cutting energy (lbs/in ²)
Grey Cast Iron	120 - 320	0.75	· –	5. Torque	= (HP • 5252) / RPM
Cast Aluminum	30 - 180	0.40		where:	
Wrought Aluminum	30 - 180	0.40		Torque	= torque (ft/lbs)
Aluminum Bronze	100 - 250	0.50		HP	= tool power (HP)
Brass	100	0.35		RPM	= revolutions per minute (rev/min)
Copper	60	0.30			

Formulas

The table and equations on this page are found in the Machinery's Handbook. Permission to simplify and print the equations is granted by the Editor of the Machinery's Handbook.

IMPORTANT: The speeds and feeds listed above are considered a general starting point for all applications. Factory technical assistance is available for your specific applications through our Application Engineering department. *ext:* **7611** | *email:* **appeng@alliedmachine.com**

Recommended Cutting Data | Metric (mm)

				Speed (M/min)		
		Hardness				Feed Rate
ISO	Material	(BHN)	AM300®	AM200®	TiN	(mm/rev)
	Free-Machining Steel 1118, 1215, 12L14, etc.	100 - 250	274 - 396	259 - 366	213 - 274	0.09 - 0.18
	Low-Carbon Steel 1010, 1020, 1025, 1522, 1144, etc.	85 - 275	259 - 381	244 - 351	198 - 259	0.08 - 0.17
	Medium-Carbon Steel 1030, 1040, 1050, 1527, 1140, 1151, etc.	125 - 325	244 - 320	229 - 290	183 - 259	0.09 - 0.17
Р	Alloy Steel 4140, 5140, 8640, etc.	125 - 375	229 - 305	213 - 274	183 - 259	0.09 - 0.17
	High-Strength Alloy 4340, 4330V, 300M, etc.	225 - 400	183 - 259	168 - 229	122 - 198	0.08 - 0.13
	Structural Steel A36, A285, A516, etc.	100 - 350	259 - 320	244 - 290	198 - 259	0.08 - 0.17
	Tool Steel H-13, H-21, A-4, 0-2, S-3, etc.	150 - 250	122 - 244	107 - 213	76 - 198	0.06 - 0.13
S	High-Temp Alloy Hastelloy B, Inconel 600, etc.	140 - 310	76 - 137	76 - 107	46 - 91	0.06 - 0.11
	Stainless Steel 400 Series 416, 420, etc.	185 - 350	183 - 259	168 - 229	122 - 198	0.08 - 0.15
м	Stainless Steel 300 Series 304, 316, 17-4PH, etc.	135 - 275	183 - 259	168 - 229	122 - 198	0.08 - 0.15
	Super Duplex Stainless Steel	135 - 275	152 - 228	137 - 198	91 - 152	0.05 - 0.12
к	Nodular, Grey, Ductile Cast Iron	120 - 320	213 - 274	198 - 244	152 - 213	0.10 - 0.20
	Cast Aluminum	30 - 180	381 - 503	381 - 472	290 - 335	0.15 - 0.30
Ν	Wrought Aluminum	30 - 180	381 - 503	381 - 472	290 - 335	0.15 - 0.30
	Brass	30 - 100	290 - 411	274 - 381	229 - 335	0.13 - 0.23

Material Constants

Material Constants			Form	ulas	
			1.	RPM	= (318.31 • M/min) / DIA
Type of Material	Hardness (BHN)	K _m (kPa)		where: RPM	= revolutions per minute (rev/min)
Free-Machining Steel	100 - 250	5.17		M/min DIA	= speed (M/min) = diameter of drill (mm)
Low-Carbon Steel	85 - 275	5.86		DIA	
Medium-Carbon Steel	125 - 325	6.21	2.	kW	= (DIA ² • mm/rev • RPM • K _m) / 181,018
Alloy Steel	125 - 375	6.90		where:	
High-Strength Steel	225 - 400	7.93		kW	= tool power (kW)
Structural Steel	100 - 350	6.90		DIA	= diameter of drill (mm)
Tool Steel	150 - 250	6.21		mm/rev	= feed rate (mm/rev)
High-Temperature Alloy	140 - 310	9.93		RPM	= revolutions per minute (rev/min)
Titanium Alloy	140 - 310	4.97		K _m	= specific cutting energy (kPa)
Aerospace Alloy	185 - 350	4.48			machine efficiency (using 181,018 as constant)
Stainless Steel 400 Series	185 - 350	7.45	. 3.	Thrust	= 148.78 • mm/rev • DIA • K _m
Stainless Steel 300 Series	135 - 275	6.48		where:	
Super Duplex Stainless Steel	135 - 275	6.48		Thrust	= axial thrust (N)
Wear Plate	400 - 600	11.04		mm/rev	= feed rate (mm/rev)
Hardened Steel	300 - 500	9.66		DIA	= diameter of drill (mm)
Nodular, Ductile Cast Iron	120 - 320	4.48		K _m	= specific cutting energy (kPa)
Grey Cast Iron	120 - 320	5.17	5.	Torque	= (kW • 9549.3) / RPM
Cast Aluminum	30 - 180	2.76	· 5.	where:	- (rvv - 2942.2) / rrivi
Wrought Aluminum	30 - 180	2.76		Torque	= torque (Nm)
Aluminum Bronze	100 - 250	3.45		HP	= tool power (kW)
Brass	100	2.41		RPM	= revolutions per minute (rev/min)
Copper	60	2.07			

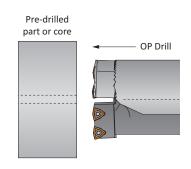
The table and equations on this page are found in the Machinery's Handbook. Permission to simplify and print the equations is granted by the Editor of the Machinery's Handbook.

IMPORTANT: The speeds and feeds listed above are considered a general starting point for all applications. Factory technical assistance is available for your specific applications through our Application Engineering department. ext: 7611 | email: appeng@alliedmachine.com

section A70

Opening Drill®

Imperial		
Speed and Fee	eds	103
Formulas and	Constants	104
Metric		
Speed and Fee	eds	105
Formulas and	Constants	106


Recommended Cutting Data | Imperial (inch)

			Speed (SFM)			
		Hardness				Feed Rate
ISO	Material	(BHN)	AM300®	AM200®	TiN	(IPR)
	Free-Machining Steel 1118, 1215, 12L14, etc.	100 - 250	900 - 1300	850 - 1200	700 - 900	.0035007
	Low-Carbon Steel 1010, 1020, 1025, 1522, 1144, etc.	85 - 275	850 - 1250	800 - 1150	650 - 850	.0030065
	Medium-Carbon Steel 1030, 1040, 1050, 1527, 1140, 1151, etc.	125 - 325	800 - 1050	750 - 950	600 - 850	.00350065
Р	Alloy Steel 4140, 5140, 8640, etc.	125 - 375	750 - 1000	700 - 900	600 - 850	.00350065
	High-Strength Alloy 4340, 4330V, 300M, etc.	225 - 400	600 - 850	550 - 750	400 - 650	.003005
	Structural Steel A36, A285, A516, etc.	100 - 350	850 - 1050	800 - 950	650 - 850	.0030065
	Tool Steel H-13, H-21, A-4, 0-2, S-3, etc.	150 - 250	400 - 800	350 - 700	250 - 650	.0025005
S	High-Temp Alloy Hastelloy B, Inconel 600, etc.	140 - 310	250 - 450	250 - 350	150 - 300	.0025005
	Stainless Steel 400 Series 416, 420, etc.	185 - 350	600 - 850	550 - 750	400 - 650	.003006
Μ	Stainless Steel 300 Series 304, 316, 17-4PH, etc.	135 - 275	600 - 850	550 - 750	400 - 650	.003006
	Super Duplex Stainless Steel	135 - 275	500 - 750	450 - 650	300 - 550	.002005
К	Nodular, Grey, Ductile Cast Iron	120 - 320	700 - 900	650 - 800	500 - 700	.004008
	Cast Aluminum	30 - 180	1250 - 1650	1200 - 1550	950 - 1100	.006012
Ν	Wrought Aluminum	30 - 180	1250 - 1650	1200 - 1550	950 - 1100	.006012
	Brass	30 - 100	950 - 1350	900 - 1250	750 - 1100	.005009

Minimum Pilot Hole Diameter = Finish Diameter – C

Ex: To open an existing diameter hole to 2.75" diameter, an OP2 tool would be used. The minimum pilot hole diameter would be: 2.750 - 1.880 = 0.870"

Opening Drill Series	Drill Diameter Range	C
OP1	2.00 - 2.50	1.880
OP2	2.50 - 3.00	1.880
OP3	3.00 - 4.12	1.880
OP4	4.12 - 5.62	2.680

IMPORTANT: The speeds and feeds listed above are considered a general starting point for all applications. Factory technical assistance is available for your specific applications through our Application Engineering department. *ext*: **7611** | *email*: **appeng@alliedmachine.com**

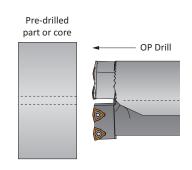
Formulas and Constants | Imperial (inch)

Material Constants

Type of Material	Hardness (BHN)	K _m (lbs/in²)
Free-Machining Steel	100 - 250	0.75
Low-Carbon Steel	85 - 275	0.85
Medium-Carbon Steel	125 - 325	0.90
Alloy Steel	125 - 375	1.00
High-Strength Steel	225 - 400	1.15
Structural Steel	100 - 350	1.00
Tool Steel	150 - 250	0.90
High-Temperature Alloy	140 - 310	1.44
Titanium Alloy	140 - 310	0.72
Aerospace Alloy	185 - 350	0.70
Stainless Steel 400 Series	185 - 350	1.08
Stainless Steel 300 Series	135 - 275	0.94
Super Duplex Stainless Steel	135 - 275	0.94
Wear Plate	400 - 600	1.60
Hardened Steel	300 - 500	1.40
Nodular, Ductile Cast Iron	120 - 320	0.65
Grey Cast Iron	120 - 320	0.75
Cast Aluminum	30 - 180	0.40
Wrought Aluminum	30 - 180	0.40
Aluminum Bronze	100 - 250	0.50
Brass	100	0.35
Copper	60	0.30

Form	ormulas						
1.	RPM	= (3.82 • SFM) / DIA _F					
	where:						
	RPM	= revolutions per minute (rev/min)					
	SFM	= speed (ft/min)					
	DIA _F	= finish diameter of drill (inch)					
2.	HP	= $(0.5891 \bullet (DIA_F^2 - DIA_P^2) \bullet IPR \bullet RPM \bullet K_m) / 0.80$					
	where:						
	Tool Power	= tool power (HP)					
	DIA _F	= finish diameter of drill (inch)					
	DIA _P	= pre-drill diameter (inch)					
	IPR	= feed rate (in/rev)					
	RPM	= revolutions per minute (rev/min)					
	K _m	= specific cutting energy (lbs/in ²)					
		machine efficiency (using 0.80 as constant)					
3.	Thrust	= 148,500 • IPR • (DIA _F – DIA _P) • K _m					
	where:						
	Thrust	= axial thrust (lbs)					
	IPR	= feed rate (in/rev)					
	DIA _F	= finish diameter of drill (inch)					
	DIA _P	= pre-drill diameter (inch)					
	K _m	= specific cutting energy (lbs/in ²)					
5.	Torque	= (HP • 5252) / RPM					
	where:						
	Torque	= torque (ft/lbs)					
	HP	= tool power (HP)					
	RPM	= revolutions per minute (rev/min)					

The table and equations on this page are found in the *Machinery's Handbook*. Permission to simplify and print the equations is granted by the Editor of the *Machinery's Handbook*.


Recommended Cutting Data | Metric (mm)

			Speed (M/min)			
		Hardness				Feed Rate
ISO	Material	(BHN)	AM300®	AM200®	TiN	(mm/rev)
	Free-Machining Steel 1118, 1215, 12L14, etc.	100 - 250	274 - 396	259 - 366	213 - 274	0.09 - 0.18
	Low-Carbon Steel 1010, 1020, 1025, 1522, 1144, etc.	85 - 275	259 - 381	244 - 351	198 - 259	0.08 - 0.17
	Medium-Carbon Steel 1030, 1040, 1050, 1527, 1140, 1151, etc.	125 - 325	244 - 320	229 - 290	183 - 259	0.09 - 0.17
Ρ	Alloy Steel 4140, 5140, 8640, etc.	125 - 375	229 - 305	213 - 274	183 - 259	0.09 - 0.17
	High-Strength Alloy 4340, 4330V, 300M, etc.	225 - 400	183 - 259	168 - 229	122 - 198	0.08 - 0.13
	Structural Steel A36, A285, A516, etc.	100 - 350	259 - 320	244 - 290	198 - 259	0.08 - 0.17
	Tool Steel H-13, H-21, A-4, 0-2, S-3, etc.	150 - 250	122 - 244	107 - 213	76 - 198	0.06 - 0.13
S	High-Temp Alloy Hastelloy B, Inconel 600, etc.	140 - 310	76 - 137	76 - 107	46 - 91	0.06 - 0.11
	Stainless Steel 400 Series 416, 420, etc.	185 - 350	183 - 259	168 - 229	122 - 198	0.08 - 0.15
м	Stainless Steel 300 Series 304, 316, 17-4PH, etc.	135 - 275	183 - 259	168 - 229	122 - 198	0.08 - 0.15
	Super Duplex Stainless Steel	135 - 275	152 - 228	137 - 198	91 - 152	0.05 - 0.12
к	Nodular, Grey, Ductile Cast Iron	120 - 320	213 - 274	198 - 244	152 - 213	0.10 - 0.20
	Cast Aluminum	30 - 180	381 - 503	381 - 472	290 - 335	0.15 - 0.30
Ν	Wrought Aluminum	30 - 180	381 - 503	381 - 472	290 - 335	0.15 - 0.30
	Brass	30 - 100	290 - 411	274 - 381	229 - 335	0.13 - 0.23

Minimum Pilot Hole Diameter = Finish Diameter – C

Ex: To open an existing diameter hole to 69.85mm diameter, an OP2 tool would be used. The minimum pilot hole diameter would be: 69.85 - 47.75 = 22.10

Opening Drill Series	Drill Diameter Range	с
OP1	50.8 - 63.5	47.75
OP2	63.5 - 76.2	47.75
OP3	76.2 - 104.6	47.75
OP4	104.6 - 142.7	68.07

IMPORTANT: The speeds and feeds listed above are considered a general starting point for all applications. Factory technical assistance is available for your specific applications through our Application Engineering department.

Formulas and Constants | Metric (mm)

Material Constants

Type of Material	Hardness (BHN)	K _m (kPa)
Free-Machining Steel	100 - 250	5.17
Low-Carbon Steel	85 - 275	5.86
Medium-Carbon Steel	125 - 325	6.21
Alloy Steel	125 - 375	6.90
High-Strength Steel	225 - 400	7.93
Structural Steel	100 - 350	6.90
Tool Steel	150 - 250	6.21
High-Temperature Alloy	140 - 310	9.93
Titanium Alloy	140 - 310	4.97
Aerospace Alloy	185 - 350	4.48
Stainless Steel 400 Series	185 - 350	7.45
Stainless Steel 300 Series	135 - 275	6.48
Super Duplex Stainless Steel	135 - 275	6.48
Wear Plate	400 - 600	11.04
Hardened Steel	300 - 500	9.66
Nodular, Ductile Cast Iron	120 - 320	4.48
Grey Cast Iron	120 - 320	5.17
Cast Aluminum	30 - 180	2.76
Wrought Aluminum	30 - 180	2.76
Aluminum Bronze	100 - 250	3.45
Brass	100	2.41
Copper	60	2.07

orm	ulas	
1.	RPM	= (318.31 • M/min) / DIA _F
	where:	
	RPM	= revolutions per minute (rev/min)
	M/min	= speed (M/min)
	DIA _F	= finish diameter of drill (mm)
2.	kW	$-1/D(A^2)$ D(A^2) a mm/rou a DDM a K) / 205 154
Ζ.	where:	= (($DIA_F^2 - DIA_P^2$) • mm/rev • RPM • K _m) / 205,154
	kW	= tool power (kW)
	DIA _F	= finish diameter of drill (mm) = pre-drill diameter (mm)
	DIA _P	
	mm/rev RPM	= feed rate (mm/rev)
		= revolutions per minute (rev/min)
	K _m	= specific cutting energy (kPa)
		machine efficiency (using 205,154 as constant)
3.	Thrust	= 148.78 • mm/rev • (DIA _F – DIA _P) • K _m
	where:	
	Thrust	= axial thrust (N)
	IPR	= feed rate (mm/rev)
	DIA _F	= finish diameter of drill (mm)
	DIA _P	= predrill diameter (mm)
	K _m	= specific cutting energy (kPa)
	_	
4.	Torque	= (kW • 9549.3) / RPM
	where:	
	Torque	= torque (Nm)
	kW	= tool power (kW)
	RPM	= revolutions per minute (rev/min)

The table and equations on this page are found in the *Machinery's Handbook*. Permission to simplify and print the equations is granted by the Editor of the *Machinery's Handbook*.

section A91

Structural Steel Solutions

T-A[®] and GEN2 T-A[®]

Imperial	109
Metric	110
Deep Hole Drilling Guidelines	111
GEN3SYS® XT Pro (XTST)	113 - 114
4TEX [®] Drill	
Speeds and Feeds	115
Insert Geometry Recommendations	116
Troubleshooting	116

Recommended Cutting Data | Imperial (inch)

T-A[®] | GEN2 T-A[®]

Thin Wall Inserts

Super Cobalt

		Spe	ed (SFM) - Mist Co	oolant		Feed Rate (IPR) by Diameter	
ISO	Material	Hardness (BHN)	AM200 [®] Speed	TiAIN Speed	0 series (0.5110" - 0.6959")	1 series (0.6900" - 0.9609")	2 series (0.9610" - 1.3809")	3 series (1.3530" - 1.8829")
	Structural Steel	100 - 150	125	110	0.012	0.018	0.019	0.020
Р	A36, A285,	150 - 250	115	100	0.011	0.016	0.017	0.019
	A516, etc.	250 - 350	105	90	0.010	0.014	0.016	0.018

Notch Point[®] and 150° Structural Steel Inserts Super Cobalt

		Spe	ed (SFM) - Mist Co	oolant		Feed Rate (IPF	t) by Diameter	
SO	Material	Hardness (BHN)			0 series (0.5110" - 0.6959")	1 series (0.6900" - 0.9609")	2 series (0.9610" - 1.3809")	3 series (1.3530" - 1.8829")
	Structural Steel	100 - 150	125	110	0.010	0.012	0.014	0.018
Р	A36, A285,	150 - 250	115	100	0.009	0.011	0.012	0.016
	A516, etc.	250 - 350	105 90		0.008	0.010	0.011	0.014

GEN2 T-A Inserts Super Cobalt

		Speed (SF	M) - Mist Coolant		Feed Rate (IPF	R) by Diameter					
so	Material	Hardness (BHN)	AM200 [®] Speed	0 series (0.5110" - 0.6959")	1 series (0.6900" - 0.9609")	2 series (0.9610" - 1.3809")	3 series (1.3530" - 1.8829")				
	Structural Steel	100 - 150	125	0.010	0.012	0.014	0.018				
Р	A36, A285,	150 - 250	115	0.009	0.011	0.012	0.016				
	A516, etc.	250 - 350	105	0.008	0.010	0.011	0.011 0.014				

GEN2 T-A Inserts Carbide C1 (K35)

. ,						
	Speed (S	FM) - Mist Coolant		Feed Rate (IPR	l) by Diameter	I
SO Material	Hardness (BHN) AM300° Speed		0 series (0.5110" - 0.6959")	1 series (0.6900" - 0.9609")	2 series (0.9610" - 1.3809")	3 series (1.3530" - 1.8829")
30 Iviaterial		ANISOU Speed	(0.5110 - 0.0555)	(0.0500 - 0.5005)	(0.5010 - 1.5805)	(1.5550 - 1.8825)
Structural Steel	100 - 150	165	0.008	0.011	0.015	0.017
Structural Steel	100 - 150	105	0.008	0.011	0.013	0.017
P A36, A285,	150 - 250	155	0.006	0.010	0.013	0.015

NOTE: The speeds and feeds listed above are based on a rigid setup using air mist through tool coolant. Speed may be increased up to 50% if using high pressure flood or through coolant.

NOTE: If drilling dry without coolant, speed must be reduced significantly based on setup, drill depth, and material hardness. Up to 50% speed and feed reduction may be necessary in these types of applications. Contact the Application Engineering department for assistance. *ext:* **7611** | *email:* **appeng@alliedmachine.com**

Recommended Cutting Data | Metric (mm)

T-A[®] | GEN2 T-A[®]

Super Cobalt

			Spee	d (M/min) - Mist (Coolant	Feed Rate (mm/rev) by Diameter								
	ISO	Material	Hardness (BHN) AM200° Speed		TiAlN Speed	0 series (12.98 mm - 17.67 mm)	1 series (17.53 mm - 24.40 mm)	2 series (24.41 mm - 35.06 mm)	3 series (34.37 mm - 47.82 mm)					
I		Structural Steel	100 - 150	39	34	0.30	0.45	0.48	0.50					
	Р	A36, A285,	150 - 250	35	31	0.28	0.40	0.43	0.48					
		A516, etc.	250 - 350	32 28		0.25	0.36	0.40	0.45					

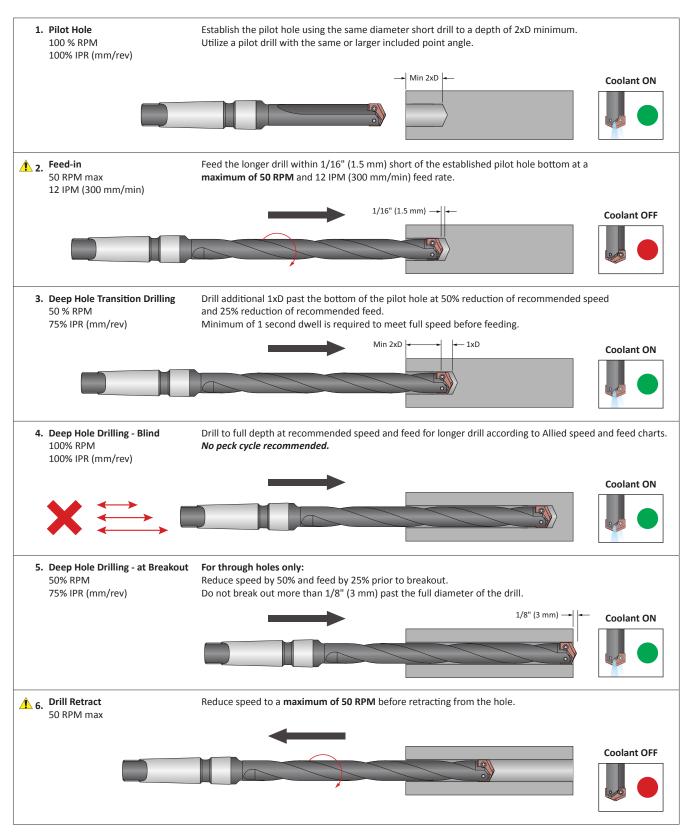
Notch Point[®] and 150° Structural Steel Inserts Super Cobalt

			Spee	d (M/min) - Mist (Coolant		Feed Rate (mm/	rev) by Diameter	
	SO	Material	Hardness (BHN)	AM200 [®] Speed		0 series	1 series (17 53 mm - 24 40 mm)	2 series (24 41 mm - 35 06 mm)	3 series (34.37 mm - 47.82 mm)
ľ	30	Structural Steel	100 - 150	39	34	0.25	0.30	0.36	0.45
	Р	A36, A285,	150 - 250	35	31	0.23	0.28	0.30	0.40
		A516, etc.	250 - 350	35	28	0.20	0.25	0.28	0.36

GEN2 T-A Inserts Super Cobalt

		Speed (M/	min) - Mist Coolant		Feed Rate (mm/	rev) by Diameter	
		Hardness		0 series	2 series	3 series	
SO	Material	(BHN) AM200® Speed		(12.98 mm - 17.67 mm)	(17.53 mm - 24.40 mm)	(24.41 mm - 35.06 mm)	(34.37 mm - 47.82 mm)
	Structural Steel	100 - 150	39	0.25	0.30	0.36	0.46
P	A36, A285,	150 - 250	35	0.23	0.28	0.30	0.40
	A516, etc.	250 - 350	35	0.20	0.36		

GEN2 T-A Inserts Carbide C1 (K35)


		Speed (M/	min) - Mist Coolant		Feed Rate (mm/	rev) by Diameter	1
ISO	Material	Hardness (BHN)	AM300 [®] Speed	0 series (12.98 mm - 17.67 mm)	1 series (17.53 mm - 24.40 mm)	2 series (24.41 mm - 35.06 mm)	3 series (34.37 mm - 47.82 mm)
	Structural Steel	100 - 150	50	0.20	0.28	0.38	0.43
Р	A36, A285,	150 - 250	47	0.15	0.25	0.33	0.38
	A516, etc.	250 - 350	43	0.13	0.23	0.30	0.33

NOTE: The speeds and feeds listed above are based on a rigid setup using air mist through tool coolant. Speed may be increased up to 50% if using high pressure flood or through coolant.

NOTE: If drilling dry without coolant, speed must be reduced significantly based on setup, drill depth, and material hardness. Up to 50% speed and feed reduction may be necessary in these types of applications. Contact the Application Engineering department for assistance. *ext:* **7611** | *email:* **appeng@alliedmachine.com**

Deep Hole Drilling Guidelines

For Use with Drills Greater than 9xD (Extended, Long, XL, 3XL, and Special Length)

A WARNING Tool failure can cause serious injury. To prevent:

- When using holders without support bushing, use a short T-A® holder to establish an initial hole that is a minimum of 2 diameters deep.

- Do not rotate tool holders more than 50 RPM unless it is engaged with the workpiece or fixture.

Visit www.alliedmachine.com/DeepHoleGuidelines for the most up-to-date information and procedures. Factory technical assistance is available for your specific applications through our Application Engineering Team. ext: 7611 | email: appeng@alliedmachine.com

Notes

 			1			 		1							

Recommended Cutting Data

GEN3SYS® XT Pro (XTST)

Imperial (inch)

		•	ed (SFM) Coolant		Fee	d Rate (IPR) by Diame	ter		
ISO Material		Hardness (BHN)	AM420 Speed	12 series (0.4724" - 0.5117")	13 series (0.5118" - 0.5511")	14 series (0.5512" - 0.5905")	15 series (0.5906" - 0.6298")	16 series (0.6299" - 0.6692")	
	Structural Steel	100 - 150	350	0.008	0.009	0.010	0.010	0.012	
Р	A36, A285,	150 - 250	300	0.007	0.008	0.009	0.009	0.010	
	A516, etc.	250 - 350	260	0.006	0.007	0.008	0.008	0.009	

Metric (mm)

				d (M/min) Coolant		Feed I	Rate (mm/rev) by Dia	meter		
	ISO	Material	Hardness (BHN)	AMA20 Speed	12 series (12.00 mm - 12.99 mm)	13 series (13.00 mm - 13.99 mm)	14 series (14.00 mm - 14.99 mm)	15 series (15.00 mm - 15.99 mm)	16 series (16.00 mm - 16.99 mm)	
ł	150		. ,		. ,	, ,		. ,	. ,	
		Structural Steel	100 - 150	107	0.20	0.22	0.25	0.25	0.30	
	Р	A36, A285,	150 - 250	91	0.18	0.20	0.23	0.23	0.25	
		A516, etc.	250 - 350	0 79 0.15		0.17	0.20	0.20	0.23	

Speed and Feed Multiplier

	Depth of Cut					
	<= 1.5xD	> 1.5xD				
Speed	See above chart	0.75				
Feed	See above chart	0.90				

NOTE: The speeds and feeds listed above are based on a rigid setup using air mist through tool coolant. Speed may be increased up to 50% if using high pressure flood or through coolant.

NOTE: If drilling dry without coolant, speed must be reduced significantly based on setup, drill depth, and material hardness. Up to 50% speed and feed reduction may be necessary in these types of applications. Contact the Application Engineering department for assistance. ext: 7611 | email: appeng@alliedmachine.com NOTE: If drilling material thickness of 0.500" (12.7 mm) or less, a minimum of 10% reduction in feed is required to minimize material deflection.

	Feed Rate (IPR) by Diameter											
17 series	18 series	20 series	22 series	24 series	26 series	29 series	32 series					
(0.6693" - 0.7086")	0.6693" - 0.7086") (0.7087" - 0.7873") (0.7874" - 0.8660			(0.9449" - 1.0235")	(1.0236" - 1.1416")	(1.1417" - 1.2597")	(1.2598" - 1.3780")					
0.012	0.014	0.015	0.016	0.017	0.018	0.019	0.019					
0.010	0.012	0.014	0.015	0.016	0.017	0.018	0.018					
0.009	0.011	0.012	0.013	0.014	0.015	0.016	0.016					
							·					

	Feed Rate (mm/rev) by Diameter											
17 series	18 series	26 series	29 series	32 series								
	17 series 18 series 20 series 7.00 mm - 17.99 mm) (18.00 mm - 19.99 mm) (20.00 mm - 21.99 rm)			24 series (24.00 mm - 25.99 mm)			(32.00 mm - 35.00 mm)					
0.30	0.36	0.38	0.41	0.43	0.46	0.48	0.48					
0.25	0.30	0.36	0.38	0.41	0.43	0.46	0.46					
0.23	0.28	0.30	0.33	0.36	0.38	0.41	0.41					

NOTE: The speeds and feeds listed above are based on a rigid setup using air mist through tool coolant. Speed may be increased up to 50% if using high pressure flood or through

NOTE: If drilling dry without coolant, speed must be reduced significantly based on setup, drill depth, and material hardness. Up to 50% speed and feed reduction may be necessary NOTE: If drilling dry without coolant, speed must be reduced significantly based on setup, drill depth, and material hardness. Up to 50% speed and feed reduction may be necessary *Provide the Application Engineering department for assistance ext:* **7611** *email:* **appeng@alliedmachine.com** NOTE: If drilling material thickness of 0.500" (12.7 mm) or less, a minimum of 10% reduction in feed is required to minimize material deflection.

Recommended Drilling Data | Imperial (inch) | Metric (mm)

4TEX[®] Indexable Drill

Imperial (inch)

			Speed (SFM)		Feed Rate (IPR) by D	iameter - 2xD, 3xD*		
	Hardness		Р	03, 04 Series	05 Series	06, 07 Series	09, 11, 14 Series	
ISO	Material	(BHN)	AM480	(0.472" - 0.591")	(0.625" - 0.709")	(0.748" - 1.024")	(1.063" - 1.562")	
	Structural Steel	100 - 150	330 - 600	0.0015 - 0.0055	0.0025 - 0.0065	0.003 - 0.008	0.003 - 0.008	
Ρ	A36, A285,	150 - 250	330 - 600	0.0015 - 0.0055	0.0025 - 0.0065	0.003 - 0.008	0.003 - 0.008	
	A516, etc.	250 - 350	350 330 - 600 0.0015 - 0		0.0025 - 0.0065	0.003 - 0.008	0.003 - 0.008	

*For 4xD tools, begin at low end of feed recommendation.

Metric (mm)

			Speed (M/min)		Feed Rate (mm/rev) by	y Diameter - 2xD, 3xD*		
	Hardne		Р	03, 04 Series	05 Series	06, 07 Series	09, 11, 14 Series	
ISO	Material	(BHN)	AM480	(12.00 mm - 15.00 mm)	(15.88 mm - 18.00 mm)	(19.00 mm - 26.00 mm)	(27.00 mm - 39.67 mm)	
	Structural Steel	100 - 150	100 - 185	0.05 - 0.13	0.07 - 0.13	0.08 - 0.13	0.08 - 0.13	
Ρ	A36, A285,	150 - 250	100 - 185	0.05 - 0.13	0.07 - 0.13	0.08 - 0.13	0.08 - 0.13	
	A516, etc. 250 - 350		100 - 185	0.05 - 0.13	0.07 - 0.13	0.08 - 0.13	0.08 - 0.13	

*For 4xD tools, begin at low end of feed recommendation.

Insert Geometry Recommendations | Troubleshooting

4TEX[®] Indexable Drill

Insert Geometry Recommendations

					Geometry		
ISO	Material	Hardness (BHN)	Р	м	к	N	н
	Structural Steel	100 - 150	0	•			
Р	A36, A285, A516, etc.	150 - 250	0	•			
		250 - 350	•				0

Troubleshooting

1.	Starting on Uneven SurfacesReduce entry feed by 50% if necessary	7.	Chain DrillingUse good coolant flowReduce feed rate by 50% for interrupted cutUse lower rake geometry if insert chipping occurs
2.	 Starting on Angled Surfaces Reduce entry feed by 20 - 50% Use lower rake geometry if insert chipping occurs 	8.	Starting on an EdgeReduce entry feed rate by 50%Use lower rake geometry if insert chipping occurs
3.	 Angled Bore Exit Reduce entry feed by 50% on breakout Use tough insert and stable corner radius 	9.	Starting on a Welded SeamReduce entry feed rate by 50%Use lower rake geometry if insert chipping occurs
4.	 Starting on Convex Surfaces Reduce entry feed by 50% Use lower rake geometry if insert chipping occurs 	10.	Drilling Through Stacked PlatesNot recommended
5.	Drilling Through a Cross HoleReduce feed rate 50% if necessary	11.	Opening an Existing Hole Use flood coolant
	 Use good coolant flow and monitor chip packing Use lower rake geometry if insert chipping occurs 	12.	AdjustableFor mills, use eccentric sleeve with end mill holder
6.	Drilling on a Groove or Large Centering BoxReduce entry feedUse lower rake geometry for center insert		 For lathes, use x-axis to adjust offset Ø NOTE: Refer to maximum offset Ø in data tables

section A92

AccuPort 432®

Imperial		
High-Speed Stee	I	119 - 120
Carbide		121 - 122
Metric		
High-Speed Stee	I	123 - 124
Carbide		125 - 126

Recommended Drilling Data | Imperial (inch)

HSS

					Speed	d (SFM)		Feed	Rate (IPR) by Tube S	ize and T-/	A® Insert S	eries
		Hardness						Tube No. 4 - 5	Tube No. 6 - 8	Tube No. 10	Tube No. 12 - 16	Tube No. 20 - 24	Tube No. 32
ISO	Material	(BHN)	Grade	TiN	TiAIN	TiCN	AM200®	T-A Series Y - Z	T-A Series O	T-A Series 1	T-A Series 2	T-A Series 3	T-A Series 4
	Free-Machining Steel	100 - 150	HSS	200	280	260	325	0.007	0.010	0.013	0.016	0.020	0.023
	1118, 1215, 12L14, etc.	150 - 200	HSS	180	260	235	300	0.007	0.010	0.013	0.016	0.020	0.023
		200 - 250	HSS	160	240	210	280	0.006	0.010	0.013	0.016	0.020	0.023
	Low-Carbon Steel	85 - 125	HSS	170	250	220	290	0.006 🛠	0.009	0.012	0.015	0.019	0.023
	1010, 1020, 1025, 1522,	125 - 175	HSS	160	240	210	275	0.006 🛠	0.009	0.012	0.015	0.019	0.023
	1144, etc.	175 - 225	HSS	150	225	195	260	0.005 🛠	0.008	0.010	0.014	0.018	0.021
		225 - 275	HSS	140	210	180	240	0.005 🛠	0.008	0.010	0.014	0.018	0.021
	Medium-Carbon Steel	125 - 175	HSS	160	240	210	275	0.006	0.009	0.012	0.015	0.019	0.023
	1030, 1040, 1050, 1527,	175 - 225	HSS	150	225	195	260	0.005	0.008	0.010	0.014	0.018	0.021
	1140, 1151, etc.	225 - 275	HSS	140	210	180	240	0.005	0.008	0.010	0.014	0.018	0.021
		275 - 325	SC	130	195	170	225	0.004	0.007	0.009	0.012	0.016	0.019
Р	Alloy Steel	125 - 175	HSS	150	210	195	240	0.006	0.008	0.010	0.014	0.017	0.019
P	4140, 5140, 8640, etc.	175 - 225	HSS	140	195	180	225	0.005	0.008	0.010	0.014	0.017	0.019
		225 - 275	HSS	130	180	170	210	0.005	0.007	0.010	0.014	0.017	0.019
		275 - 325	SC	120	170	155	195	0.004	0.006	0.009	0.012	0.015	0.017
		325 - 375	SC	110	155	145	180	0.003	0.006	0.009	0.012	0.015	0.017
	High-Strength Alloy	225 - 300	SC	80	110	100	125	0.005 🛠	0.007	0.009	0.010	0.014	0.017
	4340, 4330V, 300M, etc.	300 - 350	SC	60	85	80	100	0.004 🛠	0.007	0.009	0.010	0.014	0.017
		350 - 400	SC	50	70	65	80	0.003 🛠	0.006	0.008	0.009	0.012	0.015
	Structural Steel	100 - 150	HSS	140	200	180	235	0.006 🛠	0.010	0.012	0.014	0.018	0.021
	A36, A285, A516, etc.	150 - 250	HSS	120	170	155	190	0.005 🛠	0.009	0.010	0.012	0.016	0.019
		250 - 350	SC	100	140	130	160	0.004 🛠	0.009	0.009	0.010	0.014	0.017
	Tool Steel	150 - 200	SC	80	110	105	125	0.004 🛠	0.006	0.008	0.010	0.014	0.015
	H-13, H-21, A-4, 0-2, S-3, etc.	200 - 250	SC	60	90	85	105	0.004 🛠	0.006	0.008	0.010	0.012	0.015
	High-Temp Alloy	140 - 220	SC	30	40	35	45	0.003 🛠	0.007	0.008	0.010	0.012	0.015
S	Hastelloy B, Inconel 600, etc.	220 - 310	SC	25	35	30	40	0.003 🛠	0.006	0.007	0.008	0.010	0.012
	Stainless Steel 400 Series	185 - 275	SC	75	105	95	110	0.006 🛠	0.008	0.009	0.011	0.012	0.016
Μ	416, 420, 303, etc.	275 - 350	SC	60	90	80	100	0.005 �	0.007	0.008	0.010	0.012	0.014
	Nodular, Grey, Ductile Cast Iron	120 - 150	HSS	170	250	220	290	0.007	0.012	0.016	0.020	0.024	0.027
		150 - 200	HSS	150	225	195	260	0.006	0.011	0.014	0.018	0.022	0.025
К		200 - 220	HSS	130	195	170	225	0.006	0.009	0.012	0.016	0.018	0.021
		220 - 260	SC	110	165	145	190	0.005	0.007	0.009	0.012	0.014	0.017
		260 - 320	SC	90	135	120	155	0.004	0.006	0.007	0.009	0.012	0.014
	Aluminum	30	HSS	600	850	750	_	0.008	0.013	0.016	0.020	0.022	0.025
Ν		180	HSS	300	450	400	-	0.008	0.013	0.016	0.018	0.022	0.025

Formulas

. RPM	= (3.82 • SFM) / DIA	2.	SFM	= RPM • 0.262 • DIA	3.	IPM	= RPM • IPR
where:			where:			where:	
RPM	= revolutions per minute (rev/min)		SFM	= speed (ft/min)		IPM	= Feed rate
SFM	= speed (ft/min)		RPM	= revolutions per minute (rev/min)		RPM	= revolutions per minute (rev/min)
DIA	= finish diameter of drill (inch)		DIA	= diameter of drill (inch)		IPR	= feed rate (in/rev)

The table and equations on this page are found in the *Machinery's Handbook*. Permission to simplify and print the equations is granted by the Editor of the *Machinery's Handbook*.

IMPORTANT: The speeds and feeds listed above are a general starting point for all applications. Refer to the Coolant Recommendation charts for coolant requirements to run at the recommended speeds and feeds. Factory technical assistance is also available through our Application Engineering Team. *ext:* **7611** | *email:* **appeng@alliedmachine.com** Due to potential chip formation issues, contact our Application Engineering Team for assistance machining materials marked with a *****.

Coolant Recommendations | Imperial (inch)

HSS

			Tube No. 4 - 5	Tube No. 6 - 8	Tube No. 10	Tube No. 12 - 16	Tube No. 20 - 24	Tube No. 32
ISO	Material	Pressure / Flow Rate	T-A Series Y - Z	T-A Series O	T-A Series 1	T-A Series 2	T-A Series 3	T-A Series 4
	Free-Machining Steel	PSI	175 - 185	100 - 120	105 - 140	80 - 115	75 - 100	40 - 50
	1118, 1215, 12L14, etc.	GPM	2.5 - 2.6	2.8 - 3.0	4.4 - 5.2	7 - 8	12 - 14	30 - 33
	Low-Carbon Steel	PSI	165 - 170	75 - 90	75 - 95	60 - 80	55 - 75	30 - 40
	1010, 1020, 1025, 1522, 1144, etc.	GPM	2.4 - 2.5	2.4 - 2.6	3.7 - 4.2	6 - 7	11 - 12	26 - 30
	Medium-Carbon Steel	PSI	160 - 165	70 - 85	70 - 90	55 - 75	50 - 70	30 - 40
	1030, 1040, 1050, 1527, 1140, 1151, etc.	GPM	2.3 - 2.4	2.3 - 2.6	3.7 - 4.2	5 - 6	10 - 12	26 - 30
D	Alloy Steel	PSI	160 - 165	65 - 75	65 - 80	50 - 70	45 - 60	30 - 35
P	4140, 5140, 8640, etc.	GPM	2.3 - 2.4	2.2 - 2.4	3.5 - 3.9	5 - 6	10 - 11	26 - 28
	High-Strength Alloy	PSI	150 - 155	55 - 60	45 - 50	25 - 30	25 - 30	20 - 25
	4340, 4330V, 300M, etc.	GPM	2.3 - 2.4	2.1 - 2.2	2.9 - 3.1	4 - 5	7 - 8	21 - 23
	Structural Steel	PSI	160 - 165	75 - 85	65 - 80	40 - 55	40 - 50	25 - 30
	A36, A285, A516, etc.	GPM	2.3 - 2.4	2.4 - 2.6	3.5 - 3.9	5 - 6	9 - 10	23 - 26
	Tool Steel	PSI	150 - 155	55 - 60	45 - 50	25 - 30	25 - 30	20 - 25
	H-13, H-21, A-4, 0-2, S-3, etc.	GPM	2.3 - 2.4	2.1 - 2.2	2.9 - 3.1	4 - 5	7 - 8	21 - 23
	High-Temp Alloy	PSI	150 - 155	60 - 65	50 - 55	30 - 35	25 - 30	25 - 30
S	Hastelloy B, Inconel 600, etc.	GPM	2.3 - 2.4	2.2 - 2.3	3.1 - 3.2	4 - 5	7 - 8	23 - 26
			10 11				, ,	10 10
м	Stainless Steel 400 Series	PSI	171	86	75	55	51	29
	416, 420, 303, etc.	GPM	3	3	4	6	10	26
	Nodular, Grey, Ductile Cast Iron	PSI	160	65	61	41	35	29
К		GPM	2	2	3	5	9	26
	Aluminum	PSI	210	180	230	159	125	51
Ν		GPM	3	4	6	9	16	33

IMPORTANT: The coolant pressure and flow rate recommendations above represent a good approximation to obtain optimum tool life and chip evacuation at Allied's recommended speeds and feeds. If lower coolant capabilities exist in a drilling application, the AccuPort 432 Port Contour Cutter will still function at reduced penetration rates. Contact our Application Engineering Department for a more specific recommendation of coolant requirements and/or speeds and feeds. *ext:* **7611** | *email:* **appeng@alliedmachine.com**

Recommended Drilling Data | Imperial (inch)

Carbide

					Speed (SFM)	Feed Ra	te (IPR) by	Tube Size an	d T-A® Inser	t Series
							Tube No. 4 - 5	Tube No. 6 - 8	Tube No. 10	Tube No. 12 - 16	Tube No. 20 - 24
ISO	Material	Hardness (BHN)	Grade	TiN	TiAIN	AM200®	T-A Series Y - Z	T-A Series O	T-A Series 1	T-A Series 2	T-A Series 3
	Free-Machining Steel	100 - 150	C1, C5	320	420	480	0.008	0.012	0.015	0.018	0.021
	1118, 1215, 12L14, etc.	150 - 200	C1, C5	280	360	415	0.007	0.011	0.014	0.016	0.019
		200 - 250	C1, C5	260	340	390	0.006	0.010	0.013	0.015	0.017
	Low-Carbon Steel	85 - 125	C1, C5	300	390	450	0.008 🛠	0.010	0.013	0.017	0.019
	1010, 1020, 1025, 1522,	125 - 175	C1, C5	260	340	390	0.007 🛠	0.010	0.013	0.016	0.018
	1144, etc.	175 - 225	C1, C5	240	310	355	0.006 🛠	0.009	0.012	0.015	0.017
		225 - 275	C1, C5	210	270	310	0.005 🛠	0.009	0.012	0.015	0.017
	Medium-Carbon Steel	125 - 175	C1, C5	260	340	390	0.007	0.010	0.013	0.016	0.018
	1030, 1040, 1050, 1527,	175 - 225	C1, C5	240	310	355	0.006	0.009	0.012	0.015	0.017
	1140, 1151, etc.	225 - 275	C1, C5	210	270	310	0.006	0.009	0.012	0.015	0.017
		275 - 325	C1, C5	180	230	265	0.005	0.008	0.011	0.014	0.016
	Alloy Steel	125 - 175	C1, C5	250	325	375	0.007	0.010	0.013	0.016	0.018
Р	4140, 5140, 8640, etc.	175 - 225	C1, C5	230	300	345	0.006	0.009	0.012	0.015	0.017
		225 - 275	C1, C5	210	270	310	0.006	0.009	0.012	0.015	0.017
		275 - 325	C1, C5	200	250	285	0.005	0.008	0.011	0.014	0.016
		325 - 375	C1, C5	170	220	255	0.004	0.007	0.010	0.013	0.015
	High-Strength Alloy	225 - 300	C1, C5	160	200	230	0.006 🛠	0.009	0.010	0.012	0.015
	4340, 4330V, 300M, etc.	300 - 350	C1, C5	140	180	205	0.005 🛠	0.008	0.009	0.011	0.014
		350 - 400	C1, C5	120	160	185	0.004 🛠	0.007	0.008	0.010	0.012
	Structural Steel	100 - 150	C1, C5	240	310	355	0.008 🛠	0.011	0.014	0.016	0.018
	A36, A285, A516, etc.	150 - 250	C1, C5	200	250	285	0.006 🛠	0.010	0.012	0.014	0.016
		250 - 350	C1, C5	180	230	265	0.005 🛠	0.009	0.011	0.012	0.014
	Tool Steel	150 - 200	C1, C5	160	220	255	0.004 🛠	0.007	0.009	0.011	0.013
	H-13, H-21, A-4, 0-2, S-3, etc.	200 - 250	C1, C5	120	170	195	0.004 🛠	0.007	0.009	0.011	0.013
s	High-Temp Alloy	140 - 220	C2	80	105	120	0.004 🛠	0.007	0.009	0.011	0.013
5	Hastelloy B, Inconel 600, etc.	220 - 310	C2	60	85	95	0.004 🛠	0.006	0.008	0.010	0.012
	Stainless Steel 400 Series	185 - 275	C2	160	210	240	0.007 🛠	0.009	0.012	0.014	0.016
Μ	416, 420, 303, etc.	275 - 350	C2	120	160	185	0.006 🛠	0.008	0.011	0.012	0.014
	Nodular, Grey, Ductile Cast Iron	120 - 150	C2, C3	320	460	500	0.008	0.012	0.015	0.019	0.023
		150 - 200	C2, C3	270	400	480	0.007	0.011	0.013	0.017	0.021
К		200 - 220	C2, C3	240	360	430	0.006	0.009	0.012	0.015	0.018
		220 - 260	C2, C3	210	310	370	0.005	0.008	0.011	0.013	0.015
		260 - 320	C2, C3	180	270	335	0.005	0.007	0.010	0.011	0.013
N	Aluminum	30	C2	1200	1500	-	0.010	0.015	0.018	0.020	0.022
IN		180	C2	800	1000	-	0.009	0.013	0.016	0.018	0.020

Formulas

. RPM	= (3.82 • SFM) / DIA	2.	SFM	= RPM • 0.262 • DIA	3.	IPM	= RPM • IPR
where:			where:			where:	
RPM	= revolutions per minute (rev/min)		SFM	= speed (ft/min)		IPM	= Feed rate
SFM	= speed (ft/min)		RPM	= revolutions per minute (rev/min)		RPM	= revolutions per minute (rev/min)
DIA	= finish diameter of drill (inch)		DIA	= diameter of drill (inch)		IPR	= feed rate (in/rev)

The table and equations on this page are found in the *Machinery's Handbook*. Permission to simplify and print the equations is granted by the Editor of the *Machinery's Handbook*.

IMPORTANT: The speeds and feeds listed above are a general starting point for all applications. Refer to the Coolant Recommendation charts for coolant requirements to run at the recommended speeds and feeds. Factory technical assistance is also available through our Application Engineering Team. *ext:* **7611** | *email:* **appeng@alliedmachine.com** Due to potential chip formation issues, contact our Application Engineering Team for assistance machining materials marked with a *****.

Coolant Recommendations | Imperial (inch)

Carbide

			Tube No. 4 - 5	Tube No. 6 - 8	Tube No. 10	Tube No. 12 - 16	Tube No. 20 - 24
ISO	Material	Pressure / Flow Rate	T-A Series Y - Z	T-A Series O	T-A Series 1	T-A Series 2	T-A Series 3
	Free-Machining Steel	PSI	195	140	160	140	155
	1118, 1215, 12L14, etc.	GPM	2.6	3.3	5.5	9	18
	Low-Carbon Steel	PSI	180	105	105	110	115
	1010, 1020, 1025, 1522, 1144, etc.	GPM	2.5	2.9	4.4	8	15
	Medium-Carbon Steel	PSI	175	100	90	100	75
	1030, 1040, 1050, 1527, 1140, 1151, etc.	GPM	2.5	2.8	4.1	7	13
Р	Alloy Steel	PSI	165	85	100	75	70
P	4140, 5140, 8640, etc.	GPM	2.4	2.6	4.3	6	12
	High-Strength Alloy	PSI	160	65	55	40	35
	4340, 4330V, 300M, etc.	GPM	2.4	2.3	3.2	5	8
	Structural Steel	PSI	175	115	105	75	70
	A36, A285, A516, etc.	GPM	2.5	3	4.4	6	12
	Tool Steel	PSI	155	60	55	40	35
	H-13, H-21, A-4, 0-2, S-3, etc.	GPM	2.4	2.2	3.2	5	8
	High-Temp Alloy	PSI	150 - 155	60 - 65	50 - 55	30 - 35	25 - 30
S	Hastelloy B, Inconel 600, etc.	GPM	2.3 - 2.4	2.2 - 2.3	3.1 - 3.2	4 - 5	7 - 8
	Stainless Steel 400 Series	PSI	329	239	260	250	190
Μ	416, 420, 303, etc.	GPM	3	4	7	12	20
	Nodular, Grey, Ductile Cast Iron	PSI	225	104	90	90	80
K		GPM	3	3	4	7	13
N	Aluminum	PSI	350	319	315	284	200
Ν		GPM	4	5	8	12	20

IMPORTANT: The coolant pressure and flow rate recommendations above represent a good approximation to obtain optimum tool life and chip evacuation at Allied's recommended speeds and feeds. If lower coolant capabilities exist in a drilling application, the AccuPort 432 Port Contour Cutter will still function at reduced penetration rates. Contact our Application Engineering Department for a more specific recommendation of coolant requirements and/or speeds and feeds. *ext:* **7611** | *email:* **appeng@alliedmachine.com**

Recommended Drilling Data | Metric (mm)

HSS

					Speed	(M/min))	Feed R	ate (mm/r	ev) by Tub	e Size and	T-A® Inser	t Series
								Tube No. 4 - 5	Tube No. 6 - 8	Tube No. 10	Tube No. 12 - 16	Tube No. 20 - 24	Tube No. 32
ISO	Material	Hardness (BHN)	Grade	TiN	TiAIN	TiCN	AM200®	T-A Series Y - Z	T-A Series O	T-A Series 1	T-A Series 2	T-A Series 3	T-A Series 4
	Free-Machining Steel	100 - 150	HSS	61	85	79	92	0.18	0.25	0.33	0.41	0.51	0.58
	1118, 1215, 12L14, etc.	150 - 200	HSS	55	79	72	87	0.18	0.25	0.33	0.41	0.51	0.58
		200 - 250	HSS	49	73	64	81	0.15	0.25	0.33	0.41	0.51	0.58
	Low-Carbon Steel	85 - 125	HSS	52	76	67	84	0.15 🛠	0.23	0.30	0.38	0.48	0.58
	1010, 1020, 1025, 1522,	125 - 175	HSS	49	73	64	81	0.15 🛠	0.23	0.30	0.38	0.48	0.58
	1144, etc.	175 - 225	HSS	46	69	59	76	0.13 🛠	0.20	0.25	0.36	0.46	0.53
		225 - 275	HSS	43	64	55	70	0.13 🛠	0.20	0.25	0.36	0.46	0.53
	Medium-Carbon Steel	125 - 175	HSS	49	73	64	79	0.15	0.23	0.30	0.38	0.48	0.58
	1030, 1040, 1050, 1527,	175 - 225	HSS	46	69	59	75	0.13	0.20	0.25	0.36	0.46	0.53
	1140, 1151, etc.	225 - 275	HSS	43	64	55	70	0.13	0.20	0.25	0.36	0.46	0.53
		275 - 325	SC	40	59	52	66	0.10	0.18	0.23	0.30	0.41	0.48
Р	Alloy Steel	125 - 175	HSS	46	64	59	69	0.15	0.20	0.25	0.36	0.43	0.48
P	4140, 5140, 8640, etc.	175 - 225	HSS	43	59	55	66	0.13	0.20	0.25	0.36	0.43	0.48
		225 - 275	HSS	40	55	52	60	0.13	0.18	0.25	0.36	0.43	0.48
		275 - 325	SC	37	52	47	56	0.10	0.15	0.23	0.30	0.38	0.43
		325 - 375	SC	34	47	44	55	0.08	0.15	0.23	0.30	0.38	0.43
	High-Strength Alloy	225 - 300	SC	24	34	30	37	0.13 🛠	0.18	0.23	0.25	0.36	0.43
	4340, 4330V, 300M, etc.	300 - 350	SC	18	26	24	27	0.10 🛠	0.18	0.23	0.25	0.36	0.43
		350 - 400	SC	15	21	20	23	0.08 🛠	0.15	0.20	0.23	0.30	0.38
	Structural Steel	100 - 150	HSS	43	61	55	67	0.15 🛠	0.25	0.30	0.36	0.46	0.53
	A36, A285, A516, etc.	150 - 250	HSS	37	52	47	56	0.13 🛠	0.23	0.25	0.30	0.41	0.48
		250 - 350	SC	30	43	40	47	0.10 🛠	0.20	0.23	0.25	0.36	0.43
	Tool Steel	150 - 200	SC	24	34	32	37	0.10	0.15	0.20	0.25	0.30	0.38
	H-13, H-21, A-4, 0-2, S-3, etc.	200 - 250	SC	18	27	26	31	0.10	0.15	0.20	0.25	0.30	0.38
	High-Temp Alloy	140 - 220	SC	30	40	35	45	0.08 🛠	0.18	0.20	0.25	0.30	0.38
S	Hastelloy B, Inconel 600, etc.	220 - 310	SC	25	35	30	40	0.08 🛠	0.15	0.18	0.20	0.25	0.30
	Stainless Steel 400 Series	185 - 275	SC	23	32	29	33	0.15 🛠	0.20	0.23	0.28	0.36	0.41
Μ	416, 420, 303, etc.	275 - 350	SC	18	27	24	29	0.13 🛠	0.18	0.20	0.25	0.30	0.36
	Nodular, Grey, Ductile Cast Iron	120 - 150	HSS	52	76	67	82	0.18	0.30	0.41	0.51	0.61	0.69
		150 - 200	HSS	46	69	59	75	0.15	0.28	0.36	0.46	0.56	0.64
К		200 - 220	HSS	40	59	52	66	0.15	0.23	0.30	0.41	0.46	0.53
		220 - 260	SC	34	50	44	55	0.13	0.18	0.23	0.30	0.36	0.43
		260 - 320	SC	27	41	37	44	0.10	0.15	0.18	0.23	0.30	0.36
N	Aluminum	30	HSS	183	259	229	_	0.20	0.33	0.41	0.51	0.56	0.64
IN		180	HSS	91	137	122	-	0.20	0.33	0.41	0.46	0.56	0.64

Formulas

1	RPM	= (318.47 • M/min) / DIA	2.	M/min	= RPM • 0.003 • DIA	3.	IPM	= RPM • mm/rev
	where:			where:			where:	
	RPM	= revolutions per minute (rev/min)		M/min	= speed (M/min)		IPM	= feed rate
	M/min	= speed (M/min)		RPM	= revolutions per minute (rev/min)		RPM	= revolutions per minute (rev/min)
	DIA	= finish diameter of drill (mm)		DIA	= diameter of drill (mm)		mm/rev	= feed rate (mm/rev)

The table and equations on this page are found in the *Machinery's Handbook*. Permission to simplify and print the equations is granted by the Editor of the *Machinery's Handbook*.

IMPORTANT: The speeds and feeds listed above are a general starting point for all applications. Refer to the Coolant Recommendation charts for coolant requirements to run at the recommended speeds and feeds. Factory technical assistance is also available through our Application Engineering Team. *ext:* **7611** | *email:* **appeng@alliedmachine.com** Due to potential chip formation issues, contact our Application Engineering Team for assistance machining materials marked with a *****.

Coolant Recommendations | Metric (mm)

HSS

		Pressure /	Tube No. 4 - 5	Tube No. 6 - 8	Tube No. 10	Tube No. 12 - 16	Tube No. 20 - 24	Tube No. 32
ISO	Material	Flow Rate	T-A Series Y - Z	T-A Series O	T-A Series 1	T-A Series 2	T-A Series 3	T-A Series 4
	Free-Machining Steel	BAR	12 - 13	7 - 8	7 - 10	6 - 8	6 - 7	3 - 4
	1118, 1215, 12L14, etc.	LPM	9.5 - 9.8	10.6 - 11.4	16.7 - 19.7	26.5 - 30.3	45.4 - 53.0	114 - 125
	Low-Carbon Steel	BAR	11 - 12	5 - 6	5 - 7	4 - 6	4 - 5	2 - 3
	1010, 1020, 1025, 1522, 1144, etc.	LPM	9.1 - 9.5	9.1 - 9.8	14.0 - 15.9	22.7 - 26.5	41.6 - 45.4	98 - 114
	Medium-Carbon Steel	BAR	11	5 - 6	5 - 6	4 - 5	3 - 5	2 - 3
	1030, 1040, 1050, 1527, 1140, 1151, etc.	LPM	8.7 - 9.1	8.7 - 9.8	13.6 - 15.5	18.9 - 22.7	37.9 - 45.4	98 - 114
P	Alloy Steel	BAR	11	5 - 6	5	3 - 5	3 - 4	2
P	4140, 5140, 8640, etc.	LPM	8.7 - 9.1	13.2 - 14.8	8.3 - 9.1	18.9 - 22.7	34.1 - 37.9	87 - 98
	High-Strength Alloy	BAR	10 - 11	4 - 5	3 - 4	2	2	2
	4340, 4330V, 300M, etc.	LPM	8.7 - 9.1	7.9 - 8.3	11.0 - 11.7	15.1 - 18.9	26.5 - 30.3	79 - 87
	Structural Steel	BAR	11	5 - 6	5 - 6	3 - 4	3	2
	A36, A285, A516, etc.	LPM	8.7 - 9.1	9.1 - 9.8	13.2 - 14.8	18.9 - 22.7	34.1 - 37.9	87 - 98
	Tool Steel	BAR	4	10 - 11	3	2	2	1 - 2
	H-13, H-21, A-4, 0-2, S-3, etc.	LPM	7.9 - 8.3	8.7 - 9.1	11.0 - 11.7	15.1 - 18.9	26.5 - 30.3	79 - 87
	High-Temp Alloy	BAR	10 - 11	4 - 5	3 - 4	2	2	2
S	Hastelloy B, Inconel 600, etc.	LPM	8.7 - 9.1	8.3 - 8.7	11.7 - 12.1	15.1 - 18.9	26.5 - 30.3	87 - 98
	Stainless Steel 400 Series	BAR	11.4 - 11.7	4.8 - 5.8	4.5 - 5.2	2.7 - 3.8	2.7 - 3.4	1.7 - 2
Μ	416, 420, 303, etc.	LPM	9.1 - 9.5	4.8 - <u>3.8</u> 8.7 - <u>9.8</u>	13.2 - 14	18.9 - 22.7	34.1 - 37.9	87 - 98
	410, 420, 303, etc.		5.1 - 5.5	0.7 - 5.8	15:2 - 14	10.5 - 22.7	54.1 - 57.5	87 - 38
к	Nodular, Grey, Ductile Cast Iron	BAR	10.7 - 11.0	4.1 - 4.5	3.4 - 4.1	2 - 2.7	2 - 2.4	1.7 - 2
ĸ		LPM	8.7 - 9.1	8.3 - 8.7	11.7 - 12.5	15.1 - 18.9	30.3 - 34.1	87 - 98
	Aluminum	BAR	13.1 - 14.5	9.6 - 12.4	10.3 - 15.8	7.9 - 11	6.2 - 8.6	2.7 - 3.4
Ν		LPM	9.8 - 10.2	12.5 - 14	20.1 - 23.1	30.3 - 34.1	53 - 60.6	114 - 125

IMPORTANT: The coolant pressure and flow rate recommendations above represent a good approximation to obtain optimum tool life and chip evacuation at Allied's recommended speeds and feeds. If lower coolant capabilities exist in a drilling application, the AccuPort 432 Port Contour Cutter will still function at reduced penetration rates. Contact our Application Engineering Department for a more specific recommendation of coolant requirements and/or speeds and feeds. *ext:* **7611** | *email:* **appeng@alliedmachine.com**

Recommended Drilling Data | Metric (mm)

Carbide

				Speed (M/min) Feed Rate (mm/rev) by Tube Size and T-A® Inser							sert Series
							Tube No. 4 - 5	Tube No. 6 - 8	Tube No. 10	Tube No. 12 - 16	Tube No. 20 - 24
ISO	Material	Hardness (BHN)	Grade	TiN	TiAIN	AM200®	T-A Series Y - Z	T-A Series O	T-A Series 1	T-A Series 2	T-A Series 3
	Free-Machining Steel	100 - 150	C1, C5	98	128	146	0.020	0.30	0.38	0.46	0.53
	1118, 1215, 12L14, etc.	150 - 200	C1, C5	85	110	126	0.18	0.28	0.36	0.41	0.48
		200 - 250	C1, C5	79	104	119	0.15	0.25	0.33	0.38	0.43
	Low-Carbon Steel	85 - 125	C1, C5	91	119	137	0.20 🛠	0.25	0.33	0.43	0.48
	1010, 1020, 1025, 1522,	125 - 175	C1, C5	79	104	119	0.18 🛠	0.25	0.33	0.41	0.46
	1144, etc.	175 - 225	C1, C5	73	94	108	0.15 🛠	0.23	0.30	0.38	0.43
		225 - 275	C1, C5	64	82	94	0.13 🛠	0.23	0.30	0.38	0.43
	Medium-Carbon Steel	125 - 175	C1, C5	79	104	119	0.18	0.25	0.33	0.41	0.46
	1030, 1040, 1050, 1527,	175 - 225	C1, C5	73	94	108	0.15	0.23	0.30	0.38	0.43
	1140, 1151, etc.	225 - 275	C1, C5	64	82	94	0.15	0.23	0.30	0.38	0.43
		275 - 325	C1, C5	55	70	81	0.13	0.20	0.28	0.36	0.41
	Alloy Steel	125 - 175	C1, C5	76	99	114	0.18	0.25	0.33	0.41	0.46
Ρ	4140, 5140, 8640, etc.	175 - 225	C1, C5	70	91	105	0.15	0.23	0.30	0.38	0.43
		225 - 275	C1, C5	64	82	94	0.15	0.23	0.30	0.38	0.43
		275 - 325	C1, C5	61	76	87	0.13	0.20	0.28	0.36	0.41
		325 - 375	C1, C5	52	67	78	0.10	0.18	0.25	0.33	0.38
	High-Strength Alloy	225 - 300	C1, C5	49	61	73	0.15 🛠	0.23	0.25	0.30	0.38
	4340, 4330V, 300M, etc.	300 - 350	C1, C5	43	55	62	0.13 🛠	0.20	0.23	0.28	0.36
		350 - 400	C1, C5	37	49	56	0.10 🛠	0.18	0.20	0.25	0.30
	Structural Steel	100 - 150	C1, C5	73	94	108	0.20 🛠	0.28	0.36	0.41	0.46
	A36, A285, A516, etc.	150 - 250	C1, C5	61	76	87	0.15 🛠	0.25	0.30	0.36	0.41
		250 - 350	C1, C5	55	70	81	0.13 🛠	0.23	0.28	0.30	0.36
	Tool Steel	150 - 200	C1, C5	49	67	78	0.10 🛠	0.18	0.23	0.28	0.33
	H-13, H-21, A-4, 0-2, S-3, etc.	200 - 250	C1, C5	37	52	59	0.10 🛠	0.18	0.23	0.28	0.33
s	High-Temp Alloy	140 - 220	C2	24	32	36	0.10 🛠	0.18	0.23	0.28	0.33
3	Hastelloy B, Inconel 600, etc.	220 - 310	C2	18	26	29	0.10 🛠	0.15	0.20	0.25	0.30
	Stainless Steel 400 Series	185 - 275	C2	49	64	73	0.18 🛠	0.23	0.30	0.36	0.41
Μ	416, 420, 303, etc.	275 - 350	C2	37	49	46	0.15 🛠	0.20	0.28	0.30	0.36
	Nodular, Grey, Ductile Cast Iron	120 - 150	C2, C3	98	140	152	0.20	0.30	0.38	0.48	0.58
		150 - 200	C2, C3	82	122	146	0.18	0.28	0.33	0.43	0.53
К		200 - 220	C2, C3	73	110	131	0.15	0.23	0.30	0.38	0.46
		220 - 260	C2, C3	64	94	113	0.13	0.20	0.28	0.33	0.38
		260 - 320	C2, C3	55	82	102	0.13	0.18	0.25	0.28	0.33
N	Aluminum	30	C2	366	457	_	0.25	0.38	0.46	0.51	0.56
		180	C2	244	305	-	0.23	0.33	0.41	0.46	0.51

Formulas

. RPM	= (318.47 • M/min) / DIA	2.	M/min	= RPM • 0.003 • DIA	3.	IPM	= RPM • mm/rev
where:			where:			where:	
RPM	= revolutions per minute (rev/min)		M/min	= speed (M/min)		IPM	= feed rate
M/min	= speed (M/min)		RPM	= revolutions per minute (rev/min)		RPM	= revolutions per minute (rev/min)
DIA	= finish diameter of drill (mm)		DIA	= diameter of drill (mm)		mm/rev	= feed rate (mm/rev)

The table and equations on this page are found in the *Machinery's Handbook*. Permission to simplify and print the equations is granted by the Editor of the *Machinery's Handbook*.

IMPORTANT: The speeds and feeds listed above are a general starting point for all applications. Refer to the Coolant Recommendation charts for coolant requirements to run at the recommended speeds and feeds. Factory technical assistance is also available through our Application Engineering Team. *ext:* **7611** | *email:* **appeng@alliedmachine.com** Due to potential chip formation issues, contact our Application Engineering Team for assistance machining materials marked with a *****.

Coolant Recommendations | Metric (mm)

Carbide

			Tube No. 4 - 5	Tube No. 6 - 8	Tube No. 10	Tube No. 12 - 16	Tube No. 20 - 24
ISO	Material	Pressure / Flow Rate	T-A Series Y - Z	T-A Series O	T-A Series 1	T-A Series 2	T-A Series 3
	Free-Machining Steel	BAR	20	16	17	15	12
	1118, 1215, 12L14, etc.	LPM	12.2	16.3	25.3	41.5	71.9
	Low-Carbon Steel	BAR	11.4	13.3	20.6	36.5	62
	1010, 1020, 1025, 1522, 1144, etc.	LPM	17	10	10	10	8
	Medium-Carbon Steel	BAR	17	9	10	8	7
	1030, 1040, 1050, 1527, 1140, 1151, etc.	LPM	11.1	12.3	19.3	30	55.8
Р	Alloy Steel	BAR	10.4	9.1	12.6	18.8	33.6
P	4140, 5140, 8640, etc.	LPM	16	9	8	7	5
	High-Strength Alloy	BAR	15	5	5	3	3
	4340, 4330V, 300M, etc.	LPM	10.4	9.1	13.6	19.7	36.5
	Structural Steel	BAR	16	9	8	7	5
	A36, A285, A516, etc.	LPM	10.8	12	17.5	27.8	47.1
	Tool Steel	BAR	15	5	5	3	3
	H-13, H-21, A-4, 0-2, S-3, etc.	LPM	10.4	9.1	13.6	19.7	36.5
	High-Temp Alloy	BAR	17	11.4	12.4	11	9
S	Hastelloy B, Inconel 600, etc.	LPM	11.1	13.5	21.9	35.4	62
	Stainless Steel 400 Series	BAR	22.7	16.5	17.9	17.2	13.1
Μ	416, 420, 303, etc.	LPM	13	16.3	26.3	44.2	75
			45.5				
К	Nodular, Grey, Ductile Cast Iron	BAR	15.5	7.2	6.2	6.2	5.5
		LPM	10.7	10.8	15.4	26.5	48.7
N	Aluminum	BAR	24.1	22	21.7	19.6	13.8
Ν		LPM	13.4	18.8	29	47.2	77

IMPORTANT: The coolant pressure and flow rate recommendations above represent a good approximation to obtain optimum tool life and chip evacuation at Allied's recommended speeds and feeds. If lower coolant capabilities exist in a drilling application, the AccuPort 432 Port Contour Cutter will still function at reduced penetration rates. Contact our Application Engineering Department for a more specific recommendation of coolant requirements and/or speeds and feeds. *ext:* **7611** | *email:* **appeng@alliedmachine.com**

SECTION B10

Wohlhaupter[®] MultiBore[®] System Tools

Imperial	
Rough Machining	129 - 130
Finish Machining	131 - 132
Metric	
Rough Machining	133 - 134
Finish Machining	135 - 136
VolCut	
Imperial	
Metric	
Length-to-Diameter Guidelines	139 - 141
Calculating Tool Assembly Weight	1/12

Rough Machining Recommended Cutting Data | Imperial (inch)

				Speed*	Recommended Feed (inch / tooth) Nose Radii				
		(BHN)		opeen					
ISO	Material	Hardness	Grade	SFM	0.008"	0.016"	0.032"	0.047"	
	Free-Machining Steel	100 - 250	Carbide	490 - 750	0.004 - 0.006	0.004 - 0.012	0.008 - 0.020	0.004 - 0.031	
	1118, 1215, 12L14, etc.		Cermet	490 - 820	0.004 - 0.006	0.004 - 0.012	0.008 - 0.020	0.004 - 0.031	
	Low-Carbon Steel	85 - 275	Carbide	460 - 820	0.004 - 0.006	0.004 - 0.012	0.008 - 0.020	0.004 - 0.031	
	1010, 1020, 1025, 1522, 1144, etc.								
	Medium-Carbon Steel	125 - 325	Carbide	460 - 820	0.004 - 0.006	0.004 - 0.012	0.008 - 0.020	0.004 - 0.031	
	1030, 1040, 1050, 1527, 1140, 1151, etc.								
Р	Alloy Steel	125 - 375	Carbide	390 - 660	0.004 - 0.006	0.004 - 0.012	0.008 - 0.020	0.004 - 0.031	
P	4140, 5140, 8640, etc.								
	High-Strength Alloy	225 - 400	Carbide	330 - 590	0.004 - 0.006	0.004 - 0.012	0.008 - 0.020	0.004 - 0.031	
	4340, 4330V, 300M, etc.								
	Structural Steel	100 - 350	Carbide	490 - 850	0.004 - 0.006	0.004 - 0.012	0.008 - 0.020	0.004 - 0.031	
	A36, A285, A516, etc.		Cermet	490 - 920	0.004 - 0.006	0.004 - 0.012	0.008 - 0.020	0.004 - 0.031	
	Tool Steel	150 - 250	Carbide	330 - 590	0.004 - 0.006	0.004 - 0.012	0.008 - 0.020	0.004 - 0.031	
	H-13, H-21, A-4, 0-2, S-3, etc.								
	High-Temp Alloy	140 - 310	Carbide	70 - 160	0.004 - 0.006	0.004 - 0.008	0.006 - 0.014	0.008 - 0.016	
	Hastelloy B, Inconel 600, etc.								
~	Titanium Alloy	140 - 310	Carbide	130 - 260	0.004 - 0.006	0.004 - 0.008	0.006 - 0.014	0.008 - 0.016	
S									
	Aerospace Alloy	185 - 350	Carbide	130 - 260	0.004 - 0.006	0.004 - 0.008	0.006 - 0.014	0.008 - 0.016	
	S82								
	Stainless Steel 400 Series	185 - 350	Carbide	160 - 330	0.004 - 0.006	0.004 - 0.010	0.004 - 0.014	0.008 - 0.024	
	416, 420, etc.	102 - 220	Carbine	100 - 350	0.004 - 0.006	0.004 - 0.010	0.004 - 0.014	0.008 - 0.024	
	Stainless Steel 300 Series	135 - 275	Carbide	260 - 490	0.004 - 0.006	0.004 - 0.010	0.004 - 0.014	0.008 - 0.024	
M	304, 316, 17-4PH, etc.	155-275	Carbine	200 - 490	0.004 - 0.006	0.004 - 0.010	0.004 - 0.014	0.008 - 0.024	
	Super Duplex Stainless Steel	135 - 275	Carbide	200 - 330	0.004 - 0.006	0.004 - 0.010	0.004 - 0.014	0.008 - 0.024	
	Super Duplex Stalliess Steel	155-275	Carbine	200-330	0.004 - 0.006	0.004 - 0.010	0.004 - 0.014	0.008 - 0.024	
					1		l		

*Not to exceed max recommended RPM for boring head found in corresponding Wohlhaupter Operation Manual.

Deep Hole Boring Speed Adjustment

A For Dynamic Boring Tool NOVITECH* Length						
Boring Type	8xD	9xD	10xD			
Roughing	0.80	0.60	0.40			
Finishing	0.90	0.70	0.50			

Not to exceed recommended RPM printed on NOVI^{TECH} module. Single-edge use is recommended.

Recommended Speed Example

If the recommended speed for a finish boring assembly under 5xD is	
120 m/min, then the speed for a 10xD finish boring assembly in the same	
application would be 60 m/min (120 m/min x $0.50 = 60$ m/min).	

5xD = 120 m/min	10xD = 60 m/min
-----------------	-----------------

IMPORTANT: Max spindle speed refers to maximum possible speed for individual boring head and is not a recommended parameter. Factory technical assistance is available for your specific applications through our Application Engineering department. *ext:* **7611** | *email:* **appeng@alliedmachine.com**

A WARNING Tool failure can cause serious injury. To prevent:

-Do not exceed recommended 10xD length-to-diameter ratio or exceed four total components (including shank).

-When using Alu-Line components, do not exceed recommended 5xD length-to-diameter ratio.

-When using tool steel components, do not exceed recommended 6xD length-to-diameter ratio.

-When using heavy metal components, do not exceed recommended 8xD length-to-diameter ratio.

-When using a carbide shank, do not exceed recommended 9xD length-to-diameter ratio.

-When using a NOVITECH" module, do not exceed recommended 10xD length-to-diameter ratio.

Rough Machining Recommended Cutting Data | Imperial (inch)

				Speed*	Recommended Feed (inch / tooth) Nose Radii			h)
ISO	Material	(BHN) Hardness	Grade	SFM	0.008"	0.016"	0.032"	0.047"
	Wear Plate	400 - 600	Carbide	100 - 160	0.002 - 0.006	0.004 - 0.008	0.004 - 0.008	0.004 - 0.010
н	Hardox [®] , AR400, T-1, etc.		CBN	200 - 460	0.002 - 0.006	0.004 - 0.008	0.004 - 0.008	0.004 - 0.010
	Hardened Steel	300 - 500	Carbide	130 - 200	0.002 - 0.006	0.004 - 0.008	0.004 - 0.008	0.004 - 0.010
			CBN	200 - 460	0.002 - 0.006	0.004 - 0.008	0.004 - 0.008	0.004 - 0.010
		100 000		100.000		0.000 0.014		0.000 0.001
	SG / Nodular Cast Iron	120 - 320	Carbide	430 - 820	0.004 - 0.006	0.006 - 0.014	0.008 - 0.020	0.008 - 0.031
К			Ceramic	660 - 1310	0.004 - 0.006	0.006 - 0.014	0.008 - 0.020	0.008 - 0.031
	Grey / White Iron	180 - 320	Carbide	490 - 920	0.004 - 0.006	0.006 - 0.014	0.008 - 0.020	0.008 - 0.031
			Ceramic	1310 - 3280	0.004 - 0.006	0.006 - 0.014	0.008 - 0.020	0.008 - 0.031
	Cast Aluminum	30 - 180	Carbide	820 - 2620	0.004 - 0.006	0.006 - 0.014	0.008 - 0.024	0.008 - 0.031
			PCD	1310 - 3940	0.004 - 0.006	0.006 - 0.014	0.008 - 0.024	0.008 - 0.031
	Wrought Aluminum	30 - 180	Carbide	660 - 1640	0.004 - 0.006	0.006 - 0.014	0.006 - 0.020	0.008 - 0.031
	Aluminum Bronze	100 - 250	Carbide	390 - 820	0.004 - 0.006	0.006 - 0.010	0.006 - 0.016	0.008 - 0.024
Ν								
	Brass	100	Carbide	660 - 1640	0.004 - 0.006	0.006 - 0.010	0.006 - 0.016	0.008 - 0.031
	Copper	60	Carbide	330 - 490	0.004 - 0.006	0.006 - 0.010	0.006 - 0.014	0.008 - 0.016
					1			

*Not to exceed max recommended RPM for boring head found in corresponding Wohlhaupter Operation Manual.

Deep Hole Boring Speed Adjustment

A For Dynamic Boring Tool NOVI ^{TECH®} Length						
Boring Type	8xD	9xD	10xD			
Roughing	0.80	0.60	0.40			
Finishing	0.90	0.70	0.50			

*Not to exceed recommended RPM printed on NOVI^{TECH®} module. Single-edge use is recommended.

Recommended Speed Example

If the recommended speed for a finish boring assembly under 5xD is
120 m/min, then the speed for a 10xD finish boring assembly in the same
application would be 60 m/min (120 m/min x $0.50 = 60$ m/min).

IMPORTANT: Max spindle speed refers to maximum possible speed for individual boring head and is not a recommended parameter. Factory technical assistance is available for your specific applications through our Application Engineering department. ext: 7611 | email: appeng@alliedmachine.com

WARNING Tool failure can cause serious injury. To prevent:

-Do not exceed recommended 10xD length-to-diameter ratio or exceed four total components (including shank).

-When using Alu-Line components, do not exceed recommended 5xD length-to-diameter ratio.

-When using tool steel components, do not exceed recommended 6xD length-to-diameter ratio.

-When using heavy metal components, do not exceed recommended 8xD length-to-diameter ratio.

-When using a carbide shank, do not exceed recommended 9xD length-to-diameter ratio.

-When using a NOVITECH® module, do not exceed recommended 10xD length-to-diameter ratio.

Finish Machining Recommended Cutting Data | Imperial (inch)

				*Speed	Recommended Feed (inch / tooth) Nose Radii			h)
ISO	Material	(BHN) Hardness	Grade	SFM	0.004"	0.008"	0.016"	0.031"
	Free-Machining Steel	100 - 250	Carbide	525 - 975	0.001 - 0.003	0.002 - 0.005	0.004 - 0.006	0.006 - 0.009
	1118, 1215, 12L14, etc.							
	Low-Carbon Steel	85 - 275	Carbide	475 - 925	0.001 - 0.002	0.002 - 0.004	0.003 - 0.005	0.005 - 0.008
	1010, 1020, 1025, 1522, 1144, etc.							
	Medium-Carbon Steel	125 - 325	Carbide	475 - 825	0.001 - 0.002	0.002 - 0.004	0.003 - 0.005	0.005 - 0.008
	1030, 1040, 1050, 1527, 1140, 1151, etc.							
P	Alloy Steel	125 - 375	Carbide	400 - 700	0.001 - 0.002	0.002 - 0.004	0.003 - 0.005	0.005 - 0.008
	4140, 5140, 8640, etc.							
	High-Strength Alloy	225 - 400	Carbide	325 - 600	0.001 - 0.002	0.002 - 0.004	0.003 - 0.005	0.005 - 0.008
	4340, 4330V, 300M, etc.							
	Structural Steel	100 - 350	Carbide	475 - 925	0001 - 0.002	0.002 - 0.004	0.003 - 0.005	0.005 - 0.008
	A36, A285, A516, etc.							
	Tool Steel	150 - 250	Carbide	325 - 600	0.001 - 0.002	0.002 - 0.003	0.003 - 0.004	0.004 - 0.006
	H-13, H-21, A-4, 0-2, S-3, etc.							
	High-Temp Alloy	140 - 310	Carbide	100 - 225	0.001 - 0.002	0.002 - 0.003	0.003 - 0.005	0.004 - 0.006
	Hastelloy B, Inconel 600, etc.							
	Titanium Alloy	140 - 310	Carbide	125 - 300	0.001 - 0.002	0.002 - 0.003	0.003 - 0.005	0.004 - 0.006
S								
	Aerospace Alloy	185 - 350	Carbide	125 - 300	0.001 - 0.002	0.002 - 0.003	0.003 - 0.005	0.004 - 0.006
	S82							
	Stainless Steel 400 Series	185 - 350	Carbide	164 - 394	0.001 - 0.002	0.002 - 0.004	0.003 - 0.004	0.004 - 0.006
	416, 420, etc.	103 - 330		104 - 354	0.001 - 0.002	0.002 - 0.004	0.003 - 0.004	0.004 - 0.000
	Stainless Steel 300 Series	135 - 275	Carbide	300 - 525	0.001 - 0.002	0.002 - 0.004	0.003 - 0.004	0.004 - 0.006
Μ	304, 316, 17-4PH, etc.	100 2.0				0.001	2.200 0.001	
	Super Duplex Stainless Steel	135 - 275	Carbide	197 - 525	0.001 - 0.002	0.002 - 0.004	0.003 - 0.004	0.004 - 0.006
		100 2.0		107 010		0.001	2.200 0.001	

*Not to exceed max recommended RPM for boring head found in corresponding Wohlhaupter Operation Manual.

Deep Hole Boring Speed Adjustment

A For Dynamic Boring Tool NOVITECH* Length						
Boring Type	8xD	9xD	10xD			
Roughing	0.80	0.60	0.40			
Finishing	0.90	0.70	0.50			

*Not to exceed recommended RPM printed on NOVI^{TECH®} module.

Recommended Speed Example

If the recommended speed for a finish boring assembly under 5xD is					
120 m/min, then the speed for a 10xD finish boring assembly in the same					
application would be 60 m/min (120 m/min x $0.50 = 60$ m/min).					

5xD = 120 m/min 10xD = 60 m/min

IMPORTANT: Max spindle speed refers to maximum possible speed for individual boring head and is not a recommended parameter. Factory technical assistance is available for your specific applications through our Application Engineering department. *ext:* **7611** | *email:* **appeng@alliedmachine.com**

MARNING Tool failure can cause serious injury. To prevent:

-Do not exceed recommended 10xD length-to-diameter ratio or exceed four total components (including shank).

-When using Alu-Line components, do not exceed recommended 5xD length-to-diameter ratio.

-When using tool steel components, do not exceed recommended 6xD length-to-diameter ratio.

-When using heavy metal components, do not exceed recommended 8xD length-to-diameter ratio.

-When using a carbide shank, do not exceed recommended 9xD length-to-diameter ratio.

-When using a NOVITECH® module, do not exceed recommended 10xD length-to-diameter ratio.

Finish Machining Recommended Cutting Data | Imperial (inch)

				*Speed	Recommended Feed (inch / tooth) Nose Radii			h)
ISO	Material	(BHN) Hardness	Grade	SFM	0.004"	0.008"	0.016"	0.031"
	Wear Plate	400 - 600	Carbide	100 - 200	0.001 - 0.002	0.002 - 0.003	0.003 - 0.004	0.004 - 0.006
н	Hardox [®] , AR400, T-1, etc.		CBN	225 - 600	0.001 - 0.002	0.002 - 0.003	0.003 - 0.004	0.004 - 0.006
	Hardened Steel	300 - 500	Carbide	125 - 275	0.001 - 0.002	0.002 - 0.003	0.003 - 0.004	0.004 - 0.006
			CBN	225 - 600	0.001 - 0.002	0.002 - 0.003	0.003 - 0.004	0.004 - 0.006
	SG / Nodular Cast Iron	120 - 320	Carbide	475 - 850	0.001 - 0.002	0.002 - 0.004	0.003 - 0.005	0.005 - 0.008
K	Grey / White Iron	180 - 320	Carbide CBN	600 - 1050 1325 - 3275	0.001 - 0.002 0.001 - 0.002	0.002 - 0.004	0.003 - 0.005 0.003 - 0.005	0.005 - 0.008
			0511	1010 01/0	01001 01001	0.002 0.001	0.000 0.000	01000 01000
	Cast Aluminum	30 - 180	Carbide	850 - 2800	0.001 - 0.002	0.002 - 0.004	0.003 - 0.005	0.005 - 0.008
			PCD	1625 - 6550	0.001 - 0.002	0.002 - 0.004	0.003 - 0.005	0.005 - 0.008
	Wrought Aluminum	30 - 180	Carbide	675 - 1975	0.001 - 0.003	0.002 - 0.005	0.004 - 0.006	0.006 - 0.009
N	Aluminum Bronze	100 - 250	Carbide	475 - 925	0.001 - 0.002	0.002 - 0.004	0.004 - 0.005	0.005 - 0.008
	Brass	100	Carbide	675 - 1975	0.001 - 0.002	0.002 - 0.004	0.003 - 0.005	0.005 - 0.008
	Copper	60	Carbide	325 - 600	0.001 - 0.002	0.002 - 0.003	0.003 - 0.004	0.004 - 0.005
					1	1		1

*Not to exceed max recommended RPM for boring head found in corresponding Wohlhaupter Operation Manual.

Deep Hole Boring Speed Adjustment

A For Dynamic Boring Tool NOVITECH® Length						
Boring Type	8xD	9xD	10xD			
Roughing	0.80	0.60	0.40			
Finishing	0.90	0.70	0.50			

*Not to exceed recommended RPM printed on NOVI^{TECH®} module.

Recommended Speed Example

If the recommended speed for a finish boring assembly under 5xD is
120 m/min, then the speed for a 10xD finish boring assembly in the same
application would be 60 m/min (120 m/min x 0.50 = 60 m/min).

5xD = 120 m/min	10xD = 60 m/min
-----------------	-----------------

IMPORTANT: Max spindle speed refers to maximum possible speed for individual boring head and is not a recommended parameter. Factory technical assistance is available for your specific applications through our Application Engineering department. ext: 7611 | email: appeng@alliedmachine.com

WARNING Tool failure can cause serious injury. To prevent:

-Do not exceed recommended 10xD length-to-diameter ratio or exceed four total components (including shank).

-When using Alu-Line components, do not exceed recommended 5xD length-to-diameter ratio.

-When using tool steel components, do not exceed recommended 6xD length-to-diameter ratio.

-When using heavy metal components, do not exceed recommended 8xD length-to-diameter ratio.

-When using a carbide shank, do not exceed recommended 9xD length-to-diameter ratio.

-When using a NOVITECH® module, do not exceed recommended 10xD length-to-diameter ratio.

Rough Machining Recommended Cutting Data | Metric (mm)

				*Speed	Recommended Feed (mm / tooth) Nose Radii			h)
		(BHN)						
ISO	Material	Hardness	Grade	M / Min	0.2 mm	0.4 mm	0.8 mm	1.2 mm
	Free-Machining Steel	100 - 250	Carbide	150 - 230	0.10 - 0.15	0.10 - 0.30	0.20 - 0.50	0.10 - 0.80
	1118, 1215, 12L14, etc.		Cermet	150 - 250	0.10 - 0.15	0.10 - 0.30	0.20 - 0.50	0.10 - 0.80
	Low-Carbon Steel	85 - 275	Carbide	140 - 250	0.10 - 0.15	0.10 - 0.30	0.20 - 0.50	0.10 - 0.80
	1010, 1020, 1025, 1522, 1144, etc.							
	Medium-Carbon Steel	125 - 325	Carbide	140 - 250	0.10 - 0.15	0.10 - 0.30	0.20 - 0.50	0.10 - 0.80
	1030, 1040, 1050, 1527, 1140, 1151, etc.							
Р	Alloy Steel	125 - 375	Carbide	120 - 200	0.10 - 0.15	0.10 - 0.30	0.20 - 0.50	0.10 - 0.80
P	4140, 5140, 8640, etc.							
	High-Strength Alloy	225 - 400	Carbide	100 - 180	0.10 - 0.15	0.10 - 0.30	0.20 - 0.50	0.10 - 0.80
	4340, 4330V, 300M, etc.							
	Structural Steel	100 - 350	Carbide	150 - 260	0.10 - 0.15	0.10 - 0.30	0.20 - 0.50	0.10 - 0.80
	A36, A285, A516, etc.		Cermet	150 - 280	0.10 - 0.15	0.10 - 0.30	0.20 - 0.50	0.10 - 0.80
	Tool Steel	150 - 250	Carbide	100 - 180	0.10 - 0.15	0.10 - 0.30	0.20 - 0.50	0.10 - 0.80
	H-13, H-21, A-4, 0-2, S-3, etc.							
	High-Temp Alloy	140 - 310	Carbide	20 - 50	0.10 - 0.15	0.10 - 0.2	0.15 - 0.35	0.20 - 0.40
	Hastelloy B, Inconel 600, etc.							
~	Titanium Alloy	140 - 310	Carbide	40 - 80	0.10 - 0.15	0.10 - 0.2	0.15 - 0.35	0.20 - 0.40
S								
	Aerospace Alloy	185 - 350	Carbide	40 - 80	0.10 - 0.15	0.10 - 0.2	0.15 - 0.35	0.20 - 0.40
	S82							
	Stainlass Steel 400 Carias	195 250	Carbida	F0 100	0.10 0.15	0.10 0.35	0.10 0.35	0.20 0.00
	Stainless Steel 400 Series	185 - 350	Carbide	50 - 100	0.10 - 0.15	0.10 - 0.25	0.10 - 0.35	0.20 - 0.60
	416, 420, etc. Stainless Steel 300 Series	125 275	Carbide	90.150	0.10 - 0.15	0.10 - 0.25	0.10 - 0.35	0.20 - 0.60
M		135 - 275	Carbide	80 - 150	0.10 - 0.15	0.10 - 0.25	0.10 - 0.35	0.20 - 0.60
	304, 316, 17-4PH, etc.	125 275	Carbida	60 100	0.10 0.15	0.10 0.35	0.10 0.25	0.20.0.00
	Super Duplex Stainless Steel	135 - 275	Carbide	60 - 100	0.10 - 0.15	0.10 - 0.25	0.10 - 0.35	0.20 - 0.60
				1	1	l		<u> </u>

*Not to exceed max recommended RPM for boring head found in corresponding Wohlhaupter Operation Manual.

Deep Hole Boring Speed Adjustment

A For Dynamic Boring Tool NOVITECH* Length						
Boring Type 8xD 9xD 10x						
Roughing	0.80	0.60	0.40			
Finishing	0.90	0.70	0.50			

Not to exceed recommended RPM printed on NOVI^{TECH} module. Single-edge use is recommended.

Recommended Speed Example

If the recommended speed for a finish boring assembly under 5xD is	
120 m/min, then the speed for a 10xD finish boring assembly in the same	
application would be 60 m/min (120 m/min x $0.50 = 60$ m/min).	

5xD = 120 m/min	10xD = 60 m/min
-----------------	-----------------

IMPORTANT: Max spindle speed refers to maximum possible speed for individual boring head and is not a recommended parameter. Factory technical assistance is available for your specific applications through our Application Engineering department. *ext:* **7611** | *email:* **appeng@alliedmachine.com**

A WARNING Tool failure can cause serious injury. To prevent:

-Do not exceed recommended 10xD length-to-diameter ratio or exceed four total components (including shank).

-When using Alu-Line components, do not exceed recommended 5xD length-to-diameter ratio.

-When using tool steel components, do not exceed recommended 6xD length-to-diameter ratio.

-When using heavy metal components, do not exceed recommended 8xD length-to-diameter ratio.

-When using a carbide shank, do not exceed recommended 9xD length-to-diameter ratio.

-When using a NOVI^{TECH®} module, do not exceed recommended 10xD length-to-diameter ratio.

Rough Machining Recommended Cutting Data | Metric (mm)

				*Speed	Recommended Feed (mm / tooth) Nose Radii			
ISO	Material	(BHN) Hardness	Grade	M / Min	0.2 mm	0.4 mm	0.8 mm	1.2 mm
	Wear Plate	400 - 600	Carbide	30 - 50	0.05 - 0.15	0.10 - 0.20	0.10 - 0.20	0.10 - 0.25
н	Hardox [®] , AR400, T-1, etc.		CBN	60 - 140	0.05 - 0.15	0.10 - 0.20	0.10 - 0.20	0.10 - 0.25
	Hardened Steel	300 - 500	Carbide	40 - 60	0.05 - 0.15	0.10 - 0.20	0.10 - 0.20	0.10 - 0.25
			CBN	60 - 140	0.05 - 0.15	0.10 - 0.20	0.10 - 0.20	0.10 - 0.25
		100.000		100 050	0.40.045	0.45 0.05	0.00 0.50	
	SG / Nodular Cast Iron	120 - 320	Carbide	130 - 250	0.10 - 0.15	0.15 - 0.35	0.20 - 0.50	0.20 - 0.80
К			Ceramic	200 - 400	0.10 - 0.15	0.15 - 0.35	0.20 - 0.50	0.20 - 0.80
	Grey / White Iron	180 - 320	Carbide	150 - 280	0.10 - 0.15	0.15 - 0.35	0.20 - 0.60	0.20 - 0.80
			Ceramic	400 - 1000	0.10 - 0.15	0.15 - 0.35	0.20 - 0.60	0.20 - 0.80
	Cast Aluminum	30 - 180	Carbide	250 - 800	0.10 - 0.15	0.15 - 0.35	0.20 - 0.60	0.20 - 0.80
	Cast Aluminum	50 - 160	PCD	400 - 1200	0.10 - 0.15	0.15 - 0.35	0.20 - 0.60	0.20 - 0.80
	Westakt Aluminum	30 - 180	Carbide	200 - 500		0.15 - 0.35	0.15 - 0.50	
	Wrought Aluminum	30 - 180	Carbide	200 - 500	0.10 - 0.15	0.15 - 0.35	0.15 - 0.50	0.20 - 0.80
	Aluminum Bronze	100 - 250	Carbide	120 - 250	0.10 - 0.15	0.15 - 0.25	0.15 - 0.40	0.20 - 0.60
Ν								
	Brass	100	Carbide	200 - 500	0.10 - 0.15	0.15 - 0.25	0.15 - 0.40	0.20 - 0.80
	Copper	60	Carbide	100 - 150	0.10 - 0.15	0.15 - 0.25	0.15 - 0.35	0.20 - 0.40
				•	•	•	•	

*Not to exceed max recommended RPM for boring head found in corresponding Wohlhaupter Operation Manual.

Deep Hole Boring Speed Adjustment

A For Dynamic Boring Tool NOVITECH® Length						
Boring Type	8xD	9xD	10xD			
Roughing	0.80	0.60	0.40			
Finishing	0.90	0.70	0.50			

Not to exceed recommended RPM printed on NOVITECH module. Single-edge use is recommended.

Recommended Speed Example

If the recommended speed for a finish boring assembly under 5xD is
120 m/min, then the speed for a 10xD finish boring assembly in the same
application would be 60 m/min (120 m/min x 0.50 = 60 m/min).

IMPORTANT: Max spindle speed refers to maximum possible speed for individual boring head and is not a recommended parameter. Factory technical assistance is available for your specific applications through our Application Engineering department. ext: 7611 | email: appeng@alliedmachine.com

WARNING Tool failure can cause serious injury. To prevent:

-Do not exceed recommended 10xD length-to-diameter ratio or exceed four total components (including shank).

-When using Alu-Line components, do not exceed recommended 5xD length-to-diameter ratio.

-When using tool steel components, do not exceed recommended 6xD length-to-diameter ratio.

-When using heavy metal components, do not exceed recommended 8xD length-to-diameter ratio.

-When using a carbide shank, do not exceed recommended 9xD length-to-diameter ratio.

-When using a NOVITECH® module, do not exceed recommended 10xD length-to-diameter ratio.

Finish Machining Recommended Cutting Data | Metric (mm)

				*Speed	Recommended Feed (mm / tooth) Nose Radii			h)
		(BHN)						
ISO	Material	Hardness	Grade	M / Min	0.1 mm	0.2 mm	0.4 mm	0.8 mm
	Free-Machining Steel	100 - 250	Carbide	150 - 300	0.02 - 0.08	0.05 - 0.13	0.10 - 0.15	0.15 - 0.23
	1118, 1215, 12L14, etc.							
	Low-Carbon Steel	85 - 275	Carbide	145 - 280	0.02 - 0.05	0.05 - 0.10	0.08 - 0.13	0.13 - 0.20
	1010, 1020, 1025, 1522, 1144, etc.							
	Medium-Carbon Steel	125 - 325	Carbide	145 - 280	0.02 - 0.05	0.05 - 0.10	0.08 - 0.13	0.13 - 0.20
	1030, 1040, 1050, 1527, 1140, 1151, etc.							
Р	Alloy Steel	125 - 375	Carbide	120 - 215	0.02 - 0.05	0.05 - 0.10	0.08 - 0.13	0.13 - 0.20
r.	4140, 5140, 8640, etc.							
	High-Strength Alloy	225 - 400	Carbide	100 - 180	0.02 - 0.05	0.05 - 0.10	0.08 - 0.13	0.13 - 0.20
	4340, 4330V, 300M, etc.							
	Structural Steel	100 - 350	Carbide	145 - 280	0.02 - 0.05	0.05 - 0.10	0.08 - 0.13	0.13 - 0.20
	A36, A285, A516, etc.							
	Tool Steel	150 - 250	Carbide	100 - 180	0.02 - 0.05	0.05 - 0.08	0.08 - 0.10	0.10 - 0.15
	H-13, H-21, A-4, 0-2, S-3, etc.							
	High-Temp Alloy	140 - 310	Carbide	30 - 70	0.02 - 0.05	0.05 - 0.08	0.08 - 0.13	0.10 - 0.15
	Hastelloy B, Inconel 600, etc.							
	Titanium Alloy	140 - 310	Carbide	40 - 90	0.02 - 0.05	0.05 - 0.08	0.08 - 0.13	0.10 - 0.15
S	-							
	Aerospace Alloy	185 - 350	Carbide	40 - 90	0.02 - 0.05	0.05 - 0.08	0.08 - 0.13	0.10 - 0.15
	S82							
		405 250	0.111	50 430	0.00.0.05	0.05 0.40	0.00.040	0.40 0.45
	Stainless Steel 400 Series	185 - 350	Carbide	50 - 120	0.02 - 0.05	0.05 - 0.10	0.08 - 0.10	0.10 - 0.15
	416, 420, etc.	105.075						
Μ	Stainless Steel 300 Series	135 - 275	Carbide	90 - 160	0.02 - 0.05	0.05 - 0.10	0.08 - 0.10	0.10 - 0.15
	304, 316, 17-4PH, etc.							
	Super Duplex Stainless Steel	135 - 275	Carbide	60 - 160	0.02 - 0.05	0.05 - 0.10	0.08 - 0.10	0.10 - 0.15
							<u> </u>	

*Not to exceed max recommended RPM for boring head found in corresponding Wohlhaupter Operation Manual.

Deep Hole Boring Speed Adjustment

A For Dynamic Boring Tool NOVITECH* Length				
Boring Type	8xD	9xD	10xD	
Roughing	0.80	0.60	0.40	
Finishing	0.90	0.70	0.50	

*Not to exceed recommended RPM printed on NOVI^{TECH®} module.

Recommended Speed Example

If the recommended speed for a finish boring assembly under 5xD is				
120 m/min, then the speed for a 10xD finish boring assembly in the same				
application would be 60 m/min (120 M/Min x 0.50 = 60 m/min).				

5xD = 120 m/min 10xD = 60 m/min

IMPORTANT: Max spindle speed refers to maximum possible speed for individual boring head and is not a recommended parameter. Factory technical assistance is available for your specific applications through our Application Engineering department. *ext:* **7611** | *email:* **appeng@alliedmachine.com**

A WARNING Tool failure can cause serious injury. To prevent:

-Do not exceed recommended 10xD length-to-diameter ratio or exceed four total components (including shank).

-When using Alu-Line components, do not exceed recommended 5xD length-to-diameter ratio.

-When using tool steel components, do not exceed recommended 6xD length-to-diameter rati.o

-When using heavy metal components, do not exceed recommended 8xD length-to-diameter ratio.

-When using a carbide shank, do not exceed recommended 9xD length-to-diameter ratio.

-When using a NOVITECH* module, do not exceed recommended 10xD length-to-diameter ratio.

Finish Machining Recommended Cutting Data | Metric (mm)

				*Speed	R		eed (mm / toot Radii	h)
ISO	Material	(BHN) Hardness	Grade	M / Min	0.1 mm	0.2 mm	0.4 mm	0.8 mm
	Wear Plate	400 - 600	Carbide	30 - 60	0.02 - 0.05	0.05 - 0.08	0.08 - 0.10	0.10 - 0.15
н	Hardox [®] , AR400, T-1, etc.		CBN	70 - 180	0.02 - 0.05	0.05 - 0.08	0.08 - 0.10	0.10 - 0.15
	Hardened Steel	300 - 500	Carbide	40 - 80	0.02 - 0.05	0.05 - 0.08	0.08 - 0.10	0.10 - 0.15
			CBN	70 - 180	0.02 - 0.05	0.05 - 0.08	0.08 - 0.10	0.10 - 0.15
	SG / Nodular Cast Iron	120 - 320	Carbide	145 - 260	0.02 - 0.05	0.05 - 0.10	0.08 - 0.13	0.13 - 0.20
К	Grey / White Iron	180 - 320	Carbide	180 - 320	0.02 - 0.05	0.05 - 0.10	0.08 - 0.13	0.13 - 0.20
			CBN	400 - 1000	0.02 - 0.05	0.05 - 0.10	0.08 - 0.13	0.13 - 0.20
	Cast Aluminum	30 - 180	Carbide	260 - 850	0.02 - 0.05	0.05 - 0.10	0.08 - 0.13	0.13 - 0.20
			PCD	495 - 1995	0.02 - 0.05	0.05 - 0.10	0.08 - 0.13	0.13 - 0.20
	Wrought Aluminum	30 - 180	Carbide	205 - 600	0.02 - 0.05	0.05 - 0.13	0.10 - 0.15	0.15 - 0.23
N	Aluminum Bronze	100 - 250	Carbide	145 - 280	0.02 - 0.05	0.05 - 0.10	0.10 - 0.13	0.13 - 0.20
	Brass	100	Carbide	205 - 600	0.02 - 0.05	0.05 - 0.10	0.08 - 0.13	0.13 - 0.20
	Copper	60	Carbide	100 - 180	0.02 - 0.05	0.05 - 0.08	0.08 - 0.10	0.10 - 0.13

*Not to exceed max recommended RPM for boring head found in corresponding Wohlhaupter Operation Manual.

Deep Hole Boring Speed Adjustment

A For Dynamic Boring Tool NOVITECH® Length					
Boring Type	8xD	9xD	10xD		
Roughing	0.80	0.60	0.40		
Finishing	0.90	0.70	0.50		

*Not to exceed recommended RPM printed on NOVI^{TECH®} module.

Recommended Speed Example

If the recommended speed for a finish boring assembly under 5xD is		
120 m/min, then the speed for a 10xD finish boring assembly in the same		
application would be 60 m/min (120 m/min x 0.50 = 60 m/min).		

5xD = 120 m/min	10xD = 60 m/min

IMPORTANT: Max spindle speed refers to maximum possible speed for individual boring head and is not a recommended parameter. Factory technical assistance is available for your specific applications through our Application Engineering department. ext: 7611 | email: appeng@alliedmachine.com

WARNING Tool failure can cause serious injury. To prevent:

-Do not exceed recommended 10xD length-to-diameter ratio or exceed four total components (including shank).

-When using Alu-Line components, do not exceed recommended 5xD length-to-diameter ratio.

-When using tool steel components, do not exceed recommended 6xD length-to-diameter ratio.

-When using heavy metal components, do not exceed recommended 8xD length-to-diameter ratio.

-When using a carbide shank, do not exceed recommended 9xD length-to-diameter ratio.

-When using a NOVITECH® module, do not exceed recommended 10xD length-to-diameter ratio.

Wohlhaupter VolCut: Recommended Drilling Data | Imperial (inch)

				Speed (SFM)		
		Hardness				Feed Rate
ISO	Material	(BHN)	AM300®	AM200®	TiN	(IPR)
	Free Machining Steel 1118, 1215, 12L14, etc.	100 - 250	750 - 1000	700 - 950	550 - 750	.0035007
	Low Carbon Steel 1010, 1020, 1025, 1522, 1144, etc.	85 - 275	700 - 1000	650 - 900	500 - 700	.0030065
	Medium Carbon Steel 1030, 1040, 1050, 1527, 1140, 1151, etc.	125 - 325	650 - 850	600 - 750	500 - 700	.00350065
Р	Alloy Steel 4140, 5140, 8640, etc.	125 - 375	600 - 800	550 - 700	500 - 700	.00350065
	High Strength Alloy 4340, 4330V, 300M, etc.	225 - 400	500 - 700	450 - 600	350 - 500	.003005
	Structural Steel A36, A285, A516, etc.	100 - 350	700 - 850	650 - 750	500 - 700	.0030065
	Tool Steel H-13, H-21, A-4, 0-2, S-3, etc.	150 - 250	350 - 650	300 - 550	200 - 500	.0025005
S	High Temp Alloy Hastelloy B, Inconel 600, etc.	140 - 310	_	_	_	-
	Stainless Steel 400 Series 416, 420, etc.	185 - 350	_	_	_	-
М	Stainless Steel 300 Series 304, 316, 17-4PH, etc.	135 - 275	-	-	_	-
	Super Duplex Stainless Steel	135 - 275	-	_	_	-
К	Nodular, Grey, Ductile Cast Iron	120 - 320	650 - 800	600 - 750	450 - 650	.004008
	Cast Aluminum	30 - 180	1150 - 1500	1100 - 1400	850 - 1000	.006012
Ν	Wrought Aluminum	30 - 180	1150 - 1500	1100 - 1400	850 - 1000	.006012
	Brass	30 - 100	850 - 1200	800 - 1150	650 - 1000	.005009

NOTE: For speeds/feeds not listed, contact our Application Engineering department for assistance. ext: 7611 | email: appeng@alliedmachine.com

IMPORTANT: Max spindle speed refers to maximum possible speed for individual boring head and is not a recommended parameter. Factory technical assistance is available for your specific applications through our Application Engineering department. *ext:* **7611** | *email:* **appeng@alliedmachine.com**

WARNING Tool failure can cause serious injury. To prevent:

-Do not exceed recommended 10xD length-to-diameter ratio or exceed 4 total components (including shank)

-When using tool steel components, do not exceed recommended 6xD length to diameter ratio

-When using a heavy metal reducer, do not exceed recommended 8xD length to diameter ratio

-When using a carbide shank, do not exceed recommended 9xD length to diameter ratio

-When using a NOVI^{TECH} module, do not exceed recommended 10xD length to diameter ratio

Wohlhaupter VolCut: Recommended Drilling Data | Metric (mm)

				Speed (M/min)		
		Hardness				Feed Rate
ISO	Material	(BHN)	AM300®	AM200®	TiN	(mm/rev)
	Free Machining Steel 1118, 1215, 12L14, etc.	100 - 250	230 - 300	210 - 290	170 - 230	0.09 - 0.18
	Low Carbon Steel 1010, 1020, 1025, 1522, 1144, etc.	85 - 275	210 - 300	200 - 270	150 - 210	0.08 - 0.17
	Medium Carbon Steel 1030, 1040, 1050, 1527, 1140, 1151, etc.	125 - 325	200 - 260	180 - 230	150 - 210	0.09 - 0.17
Р	Alloy Steel 4140, 5140, 8640, etc.	125 - 375	180 - 250	170 - 210	150 - 210	0.09 - 0.17
	High Strength Alloy 4340, 4330V, 300M, etc.	225 - 400	150 - 210	140 - 180	110 - 150	0.08 - 0.13
	Structural Steel A36, A285, A516, etc.	100 - 350	210 - 260	200 - 230	150 - 210	0.08 - 0.17
	Tool Steel H-13, H-21, A-4, 0-2, S-3, etc.	150 - 250	110 - 200	90 - 170	60 - 150	0.06 - 0.13
s	High Temp Alloy Hastelloy B, Inconel 600, etc.	140 - 310	-	-	-	
	Stainless Steel 400 Series 416, 420, etc.	185 - 350	-	-	-	
Μ	Stainless Steel 300 Series 304, 316, 17-4PH, etc.	135 - 275	-	-	-	
	Super Duplex Stainless Steel	135 - 275	-	-	-	
К	Nodular, Grey, Ductile Cast Iron	120 - 320	200 - 240	180 - 230	140 - 200	0.10 - 0.20
	Cast Aluminum	30 - 180	350 - 460	330 - 430	260 - 300	0.15 - 0.30
Ν	Wrought Aluminum	30 - 180	350 - 460	330 - 430	260 - 300	0.15 - 0.30
	Brass	30 - 100	260 - 370	240 - 350	200 - 300	0.13 - 0.23

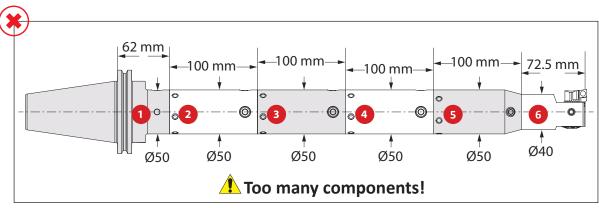
NOTE: For speeds/feeds not listed, contact our Application Engineering department for assistance. ext: 7611 | email: appeng@alliedmachine.com

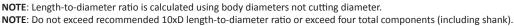
IMPORTANT: Max spindle speed refers to maximum possible speed for individual boring head and is not a recommended parameter. Factory technical assistance is available for your specific applications through our Application Engineering department. *ext:* **7611** | *email:* **appeng@alliedmachine.com**

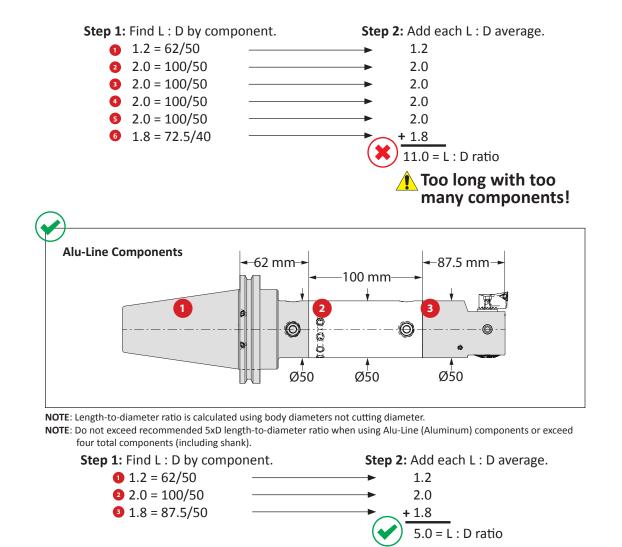
A WARNING Tool failure can cause serious injury. To prevent:

-Do not exceed recommended 10xD length-to-diameter ratio or exceed 4 total components (including shank)

-When using tool steel components, do not exceed recommended 6xD length to diameter ratio


-When using a heavy metal reducer, do not exceed recommended 8xD length to diameter ratio


-When using a carbide shank, do not exceed recommended 9xD length to diameter ratio


-When using a NOVI^{TECH} module, do not exceed recommended 10xD length to diameter ratio

Guidelines for Not Exceeding Recommended Length-to-Diameter Ratio

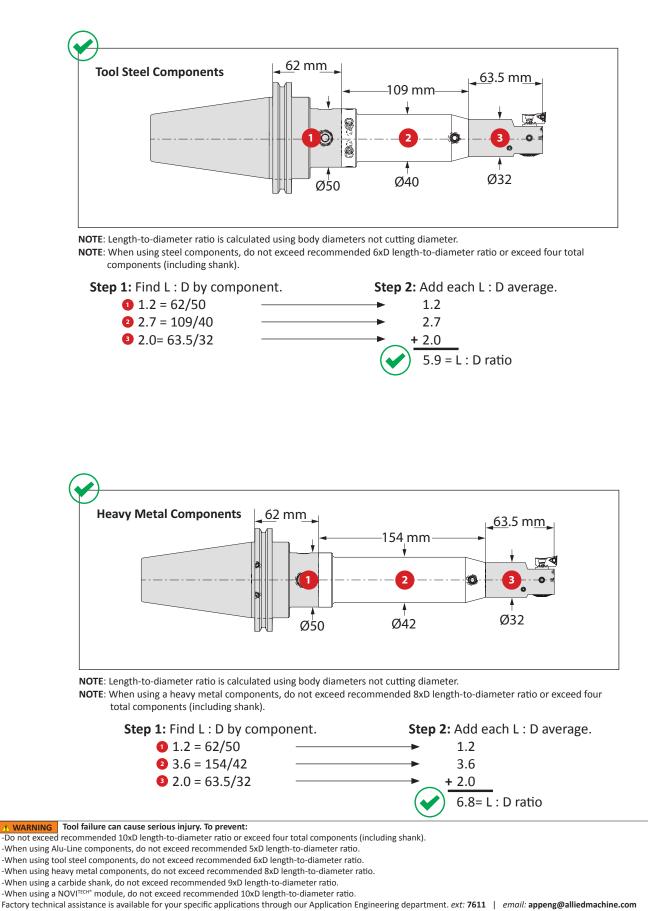
To calculate, see graphics below:

A WARNING Tool failure can cause serious injury. To prevent:

-Do not exceed recommended 10xD length-to-diameter ratio or exceed four total components (including shank).

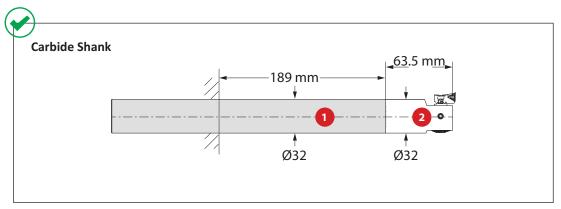
-When using Alu-Line components, do not exceed recommended 5xD length-to-diameter ratio.

-When using tool steel components, do not exceed recommended 6xD length-to-diameter ratio.

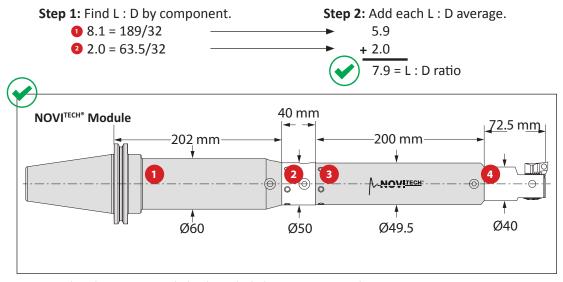

-When using heavy metal components, do not exceed recommended 8xD length-to-diameter ratio.

-When using a carbide shank, do not exceed recommended 9xD length-to-diameter ratio.

-When using a NOVITECH® module, do not exceed recommended 10xD length-to-diameter ratio.


Guidelines for Not Exceeding Recommended Length-to-Diameter Ratio

To calculate, see graphics below:


Guidelines for Not Exceeding Recommended Length-to-Diameter Ratio

To calculate, see graphics below:

NOTE: Length-to-diameter ratio is calculated using body diameters not cutting diameter.

NOTE: When using carbide shank components, do not exceed recommended 9xD length-to-diameter ratio or exceed four total components.

NOTE: Length-to-diameter ratio is calculated using body diameters not cutting diameter.

NOTE: Do not exceed recommended 10xD length-to-diameter ratio when using NOVI^{TECH®} intermediate modules or exceed four total components (including shank).

NOTE: The NOVI^{TECH*} intermediate module should always be assembled as close as possible to the cutting edge (i.e. the next component behind the boring head).

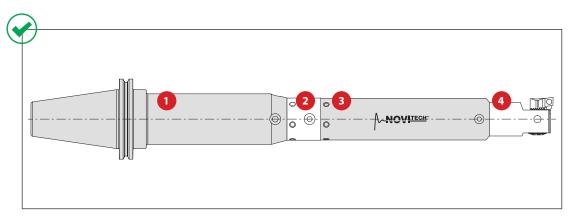
Step 1: Find L : D by component. 1 3.3 = 202/60 2 0.8 = 40/50 3 4.0 = 200/49.5 4 1.8 = 72.5/40	Step 2: Add each L : D average. 3.3 0.8 4.0 + 1.8 9.9 = L : D ratio
Component	Length-to -Diameter Ratio
Alu-Line	5xD
Tool Steel	6xD
Heavy Metal	8xD
Carbide	9xD
NOVI ^{TECH®}	10xD

MARNING Tool failure can cause serious injury. To prevent:

-Do not exceed recommended 10xD length-to-diameter ratio or exceed four total components (including shank).

-When using Alu-Line components, do not exceed recommended 5xD length-to-diameter ratio.

-When using tool steel components, do not exceed recommended 6xD length-to-diameter ratio.


-When using heavy metal components, do not exceed recommended 8xD length-to-diameter ratio.

-When using a carbide shank, do not exceed recommended 9xD length-to-diameter ratio.

-When using a NOVITECH® module, do not exceed recommended 10xD length-to-diameter ratio.

Calculating Tool Assembly Weight

To calculate, see graphics below:

Step 1: Find weight for each component circled in the example table below.

Example:

	MVS Connection	Boring Range		4 Boring	Head			
	$D_1 \mid D_2$	А	<i>X</i> 1	X2	L ₂	D5	Weight	Part No.
0	40 - 22	2.087 - 2.598	2.953	1.535	2.854	-	1.543 (lbs)	320004
0	40 - 22	53.01 - 65.98	75.00	39.00	72.50	_	0.70 (kg)	310004

Step 2: Calculate total assembly weight

1 6.6 kg
20.6 kg
3 3.5 kg
₊ 4 0.7 kg
11.4 kg

Step 3: Consult machine tool builder to ensure tool assembly weight does not exceed machine capabilities.

Imperial (in) Metric (mm)

1: WARNING Exceeding weight capacity for machine tool spindle and tool changer can cause machine damage and/or serious injury. To prevent: -Consult machine tool builder for machine's weight limitations.

Factory technical assistance is also available for specific applications through our Application Engineering department. ext: 7611 | email: appeng@alliedmachine.com

section B20

Criterion[®] Boring Systems

Imperial		145
Metric		146
Length-to-Diameter	Guidelines	147
Calculating Tool Asse	mbly Weight	148

		*Speed	R	Recommended Feed (inch / tooth) Nose Radius				
		(BHN)						
ISO	Material	Hardness	Grade	SFM	0.004"	0.008"	0.016"	0.031"
	Free-Machining Steel	100 - 250	Carbide	525 - 975	0.001 - 0.003	0.002 - 0.005	0.004 - 0.006	0.006 - 0.009
	1118, 1215, 12L14, etc.							
	Low-Carbon Steel	85 - 275	Carbide	475 - 925	0.001 - 0.002	0.002 - 0.004	0.003 - 0.005	0.005 - 0.008
	1010, 1020, 1025, 1522, 1144, etc.							
	Medium-Carbon Steel	125 - 325	Carbide	475 - 825	0.001 - 0.002	0.002 - 0.004	0.003 - 0.005	0.005 - 0.008
	1030, 1040, 1050, 1527, 1140, 1151, etc.							
Р	Alloy Steel	125 - 375	Carbide	400 - 700	0.001 - 0.002	0.002 - 0.004	0.003 - 0.005	0.005 - 0.008
P	4140, 5140, 8640, etc.							
	High-Strength Alloy	225 - 400	Carbide	325 - 600	0.001 - 0.002	0.002 - 0.004	0.003 - 0.005	0.005 - 0.008
	4340, 4330V, 300M, etc.							
	Structural Steel	100 - 350	Carbide	475 - 925	0001 - 0.002	0.002 - 0.004	0.003 - 0.005	0.005 - 0.008
	A36, A285, A516, etc.							
	Tool Steel	150 - 250	Carbide	325 - 600	0.001 - 0.002	0.002 - 0.003	0.003 - 0.004	0.004 - 0.006
	H-13, H-21, A-4, 0-2, S-3, etc.							
	High-Temp Alloy	140 - 310	Carbide	100 - 225	0.001 - 0.002	0.002 - 0.003	0.003 - 0.005	0.004 - 0.006
	Hastelloy B, Inconel 600, etc.	140 510	Carbiac	100 225	0.001 0.002	0.002 0.003	0.005 0.005	0.004 0.000
s	Titanium Alloy	140 - 310	Carbide	125 - 300	0.001 - 0.002	0.002 - 0.003	0.003 - 0.005	0.004 - 0.006
	Aerospace Alloy	185 - 350	Carbide	125 - 300	0.001 - 0.002	0.002 - 0.003	0.003 - 0.005	0.004 - 0.006
	S82	105 550	curbiac	125 500	0.001 0.002	0.002 0.003	0.003 0.003	
		1			1			
	Stainless Steel 400 Series	185 - 350	Carbide	300 - 525	0.001 - 0.002	0.002 - 0.004	0.003 - 0.004	0.004 - 0.006
	416, 420, etc.							
Μ	Stainless Steel 300 Series	135 - 275	Carbide	300 - 525	0.001 - 0.002	0.002 - 0.004	0.003 - 0.004	0.004 - 0.006
	304, 316, 17-4PH, etc.							
	Super Duplex Stainless Steel	135 - 275	Carbide	300 - 525	0.001 - 0.002	0.002 - 0.004	0.003 - 0.004	0.004 - 0.006
Н	Wear Plate	400 - 600	Carbide	100 - 200	0.001 - 0.002	0.002 - 0.003	0.003 - 0.004	0.004 - 0.006
	Hardened Steel	300 - 500	Carbide	125 - 275	0.001 - 0.002	0.002 - 0.003	0.003 - 0.004	0.004 - 0.006
14-	SG / Nodular Cast Iron	120 - 320	Carbide	475 - 850	0.001 - 0.002	0.002 - 0.004	0.003 - 0.005	0.005 - 0.008
К	Grey / White Iron	180 - 320	Carbide	600 - 1000	0.001 - 0.002	0.002 - 0.004	0.003 - 0.005	0.005 - 0.008
	Cast Aluminum	30 - 180	Carbide	850 - 1000	0.001 - 0.002	0.002 - 0.004	0.003 - 0.005	0.005 - 0.008
	Wrought Aluminum	30 - 180	Carbide	675 - 1000	0.001 - 0.002	0.002 - 0.004	0.003 - 0.003	0.006 - 0.009
N	Aluminum Bronze	100 - 250	Carbide	475 - 925	0.001 - 0.003	0.002 - 0.003	0.004 - 0.005	0.005 - 0.009
	Brass	100-250	Carbide	675 - 1000	0.001 - 0.002	0.002 - 0.004	0.003 - 0.005	0.005 - 0.008
	Copper	60	Carbide	325 - 600	0.001 - 0.002	0.002 - 0.004	0.003 - 0.003	0.003 - 0.008
	copper			323-000	0.001 - 0.002	0.002 - 0.005	0.003 - 0.004	0.004 - 0.005

*Not to exceed max recommended RPM for boring head

Deep Hole Boring Speed Adjustment

A For Dynamic Boring Tool Length							
Boring Type	7xD	8xD	9xD				
Finishing	0.70	0.50	0.30				

Recommended Speed Example

If the recommended speed for a finish boring assembly under 5xD is 400 SFM, then the speed for an 8xD finish boring assembly in the same application would be 200 SFM. (400 SFM x 0.50 = 200 SFM)

5xD = 400 SFM

8xD = 200 SFM

IMPORTANT: Max spindle speed refers to maximum possible speed for individual boring head and is not a recommended parameter. Refer to page B20: 58 for recommended application specific parameters. Factory technical assistance is available for your specific applications through our Application Engineering department. ext: 7611 | email: appeng@alliedmachine.com

A WARNING Tool failure can cause serious injury. To prevent:

- Do not exceed recommended 9xD length-to-diameter ratio or exceed 4 total components (including shank)

- Refer to example on page 141 for calculating length to diameter ratio

Factory technical assistance is available for your specific applications through our Application Engineering department. ext: 7611 | email: appeng@alliedmachine.com

				*Speed	R		eed (mm / toot Radius	h)
ISO	Material	(BHN) Hardness	Grade	M/min	0.1 mm	0.2 mm	0.4 mm	0.8 mm
	Free-Machining Steel 1118, 1215, 12L14, etc.	100 - 250	Carbide	160 - 300	0.02 - 0.07	0.05 - 0.13	0.10 - 0.15	0.15 - 0.23
	Low-Carbon Steel 1010, 1020, 1025, 1522, 1144, etc.	85 - 275	Carbide	145 - 280	0.02 - 0.05	0.05 - 0.10	0.07 - 0.13	0.13 - 0.20
	Medium-Carbon Steel 1030, 1040, 1050, 1527, 1140, 1151, etc.	125 - 325	Carbide	145 - 250	0.02 - 0.05	0.05 - 0.10	0.07 - 0.13	0.13 - 0.20
Р	Alloy Steel 4140, 5140, 8640, etc.	125 - 375	Carbide	120 - 210	0.02 - 0.05	0.05 - 0.10	0.07 - 0.13	0.13 - 0.20
	High-Strength Alloy 4340, 4330V, 300M, etc.	225 - 400	Carbide	100 - 180	0.02 - 0.05	0.05 - 0.10	0.07 - 0.13	0.13 - 0.20
	Structural Steel A36, A285, A516, etc.	100 - 350	Carbide	145 - 280	0.02 - 0.05	0.05 - 0.10	0.07 - 0.13	0.13 - 0.20
	Tool Steel H-13, H-21, A-4, O-2, S-3, etc.	150 - 250	Carbide	100 - 180	0.02 - 0.05	0.05 - 0.07	0.07 - 0.10	0.10 - 0.15
	High-Temp Alloy Hastelloy B, Inconel 600, etc.	140 - 310	Carbide	30 - 70	0.02 - 0.05	0.05 - 0.07	0.07 - 0.13	0.10 - 0.15
s	Titanium Alloy	140 - 310	Carbide	40 - 90	0.02 - 0.05	0.05 - 0.07	0.07 - 0.13	0.10 - 0.15
	Aerospace Alloy S82	185 - 350	Carbide	40 - 90	0.02 - 0.05	0.05 - 0.07	0.07 - 0.13	0.10 - 0.15
	Stainless Steel 400 Series 416, 420, etc.	185 - 350	Carbide	90 - 160	0.02 - 0.05	0.05 - 0.10	0.07 - 0.10	0.10 - 0.15
м	Stainless Steel 300 Series 304, 316, 17-4PH, etc.	135 - 275	Carbide	90 - 160	0.02 - 0.05	0.05 - 0.10	0.07 - 0.10	0.10 - 0.15
	Super Duplex Stainless Steel	135 - 275	Carbide	90 - 160	0.02 - 0.05	0.05 - 0.10	0.07 - 0.10	0.10 - 0.15
н	Wear Plate	400 - 600	Carbide	30 - 60	0.02 - 0.05	0.05 - 0.07	0.07 - 0.10	0.10 - 0.15
	Hardened Steel	300 - 500	Carbide	40 - 80	0.02 - 0.05	0.05 - 0.07	0.07 - 0.10	0.10 - 0.15
к	SG / Nodular Cast Iron Grey / White Iron	120 - 320 180 - 320	Carbide Carbide	145 - 260 180 - 306	0.02 - 0.05	0.05 - 0.10 0.05 - 0.10	0.07 - 0.13 0.07 - 0.13	0.13 - 0.20 0.13 - 0.20
	Cast Aluminum	30 - 180	Carbide	260 - 306	0.02 - 0.05	0.05 - 0.10	0.07 - 0.13	0.13 - 0.20
	Wrought Aluminum	30 - 180	Carbide	205 - 305	0.02 - 0.07	0.05 - 0.13	0.10 - 0.15	0.15 - 0.23
Ν	Aluminum Bronze	100 - 250	Carbide	145 - 280	0.02 - 0.05	0.05 - 0.10	0.10 - 0.13	0.13 - 0.20
	Brass	100	Carbide	205 - 305	0.02 - 0.05	0.05 - 0.10	0.07 - 0.13	0.13 - 0.20
	Copper	60	Carbide	100 - 180	0.02 - 0.05	0.05 - 0.07	0.07 - 0.10	0.10 - 0.13

*Not to exceed max recommended RPM for boring head

Deep Hole Boring Speed Adjustment

A For Dynamic Boring Tool Length							
Boring Type 7xD 8xD 9xD							
Finishing	0.70	0.50	0.30				

Recommended Speed Example

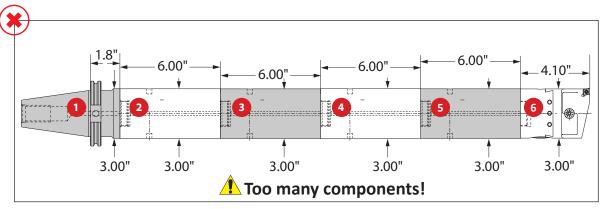
If the recommended speed for a finish boring assembly under 5xD is 260 M/min, then the speed for an 8xD finish boring assembly in the same application would be 260 M/min. (260 M/min x 0.50 = 130 M/min)

5xD = 260 M/min

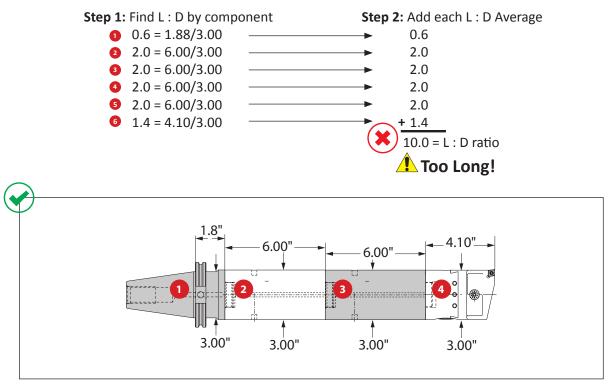
8xD = 130 M/min

IMPORTANT: Max spindle speed refers to maximum possible speed for individual boring head and is not a recommended parameter. Refer to page B20: 58 for recommended application specific parameters. Factory technical assistance is available for your specific applications through our Application Engineering department. ext: **7611** | email: appeng@alliedmachine.com

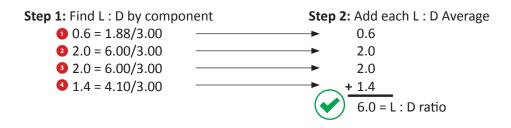
A WARNING Tool failure can cause serious injury. To prevent:


- Do not exceed recommended 9xD length-to-diameter ratio or exceed 4 total components (including shank)

- Refer to example on page 141 for calculating length to diameter ratio

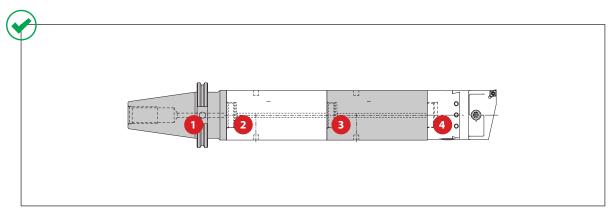

Factory technical assistance is available for your specific applications through our Application Engineering department. ext: 7611 | email: appeng@alliedmachine.com

Guidelines for Not Exceeding Recommended Length-to-Diameter Ratio


To calculate, see graphics below:

*Length to diameter ratio is calculated using body diameters, not cutting diameter.

*Length-to-diameter ratio is calculated using body diameters, not cutting diameter.



A WARNING Tool failure can cause serious injury. To prevent:

- Do not exceed recommended 9xD length-to-diameter ratio or exceed 4 total components (including shank) Factory technical assistance is available for your specific applications through our Application Engineering department. *ext:* **7611** | *email:* appeng@alliedmachine.com

Calculating Tool Assembly Weight

To calculate, see graphics below:

Step 1: Find weight for each component

Example:

	Boring Range		4 Boring	g Head			
	<i>D</i> ₁	Thread Connection	L ₁	D ₂	Weight	Insert Form	Order Number
	1.050 - 1.320	7⁄8 - 20	2.690	1.000	0.50 (lbs)	CC215	CB1000CC
	1.050 - 1.320	7‰ - 20	2.690	1.000	0.50 (lbs)	TC215	CB1000TC
	1.300 - 1.600	% - 20	2.900	1.250	0.80 (lbs)	CC215	CB1250CC
	1.300 - 1.600	‰ - 20	2.900	1.250	0.80 (lbs)	TC215	CB1250TC
0	1.585 - 2.700	‰ - 20	3.200	1.500	1.30 (lbs)	CC325	CB1500CC
U	1.585 - 2.700	‰ - 20	3.200	1.500	1.30 (lbs)	TC325	CB1500TC
	2.060 - 3.320	‰ - 20	3.590	2.000	2.40 (lbs)	CC325	CB2000CC
	2.060 - 3.320	‰ - 20	3.590	2.000	2.40 (lbs)	TC325	CB2000TC
	3.065 - 5.065	1½ - 18	4.100	3.000	5.80 (lbs)	CC325	CB3000CC
	3.065 - 5.065	1½ - 18	4.100	3.000	5.80 (lbs)	TC325	CB3000TC
	27.00 - 33.00	<u>%</u> - 20	68.35	25	0.22 (1-=)	CC0602	CROSENACC
				25	0.23 (kg)		CB025MCC
	27.00 - 33.00	7% - 20	68.35	25	0.23 (kg)	TC1102	CB025MTC
	33.00 - 41.00	7⁄8 - 20	73.65	32	0.36 (kg)	CC0602	CB032MCC
	33.00 - 41.00	7⁄8 - 20	73.65	32	0.36 (kg)	TC1102	CB032MTC
0	41.00 - 68.00	7⁄8 - 20	81.25	38	0.59 (kg)	CC09T3	CB038MCC
•	41.00 - 68.00	7⁄8 - 20	81.25	38	0.59 (kg)	TC16T3	CB038MTC
	53.00 - 84.00	% - 20	91.30	50	1.09 (kg)	CC09T3	CB050MCC
	53.00 - 84.00	7‰ - 20	91.30	50	1.09 (kg)	TC16T3	CB050MTC
	78.00 - 128.00	1½ - 18	104.25	76	2.36 (kg)	CC09T3	CB076MCC
	78.00 - 128.00	1½ - 18	104.25	76	2.36 (kg)	TC16T3	CB076MTC

Imperial (in) = 0.00005" adjustment on diameter

Metric (mm) = 0.001 mm adjustment on diameter

Step 2: Calculate total assembly weight

1	8.03 lbs	
2	11.50 lbs	
3	11.50 lbs	
+ 4	5.80 lbs	
	36.83 lbs	

Step 3: Consult machine tool builder to ensure tool assembly weight does not exceed machine capabilities.

1. WARNING Exceeding weight capacity for machine tool spindle and tool changer can cause machine damage and/or serious injury. To prevent:

- Consult machine tool builder for machine's weight limitations. Factory technical assistance is also available for specific applications through our Application Engineering department. *ext:* **7611** | *email:* **appeng@alliedmachine.com**

SECTION

ALVAN[®] Reamers

Imperial		
Replaceable Head S	Style	
7000 Series		151 - 152
9000 Series		153 - 154
5000 Series		155 - 156
Monobloc Style		157 - 158
Cutting Ring Style .		159 -160
Metric		
Replaceable Head S	Style	
7000 Series		161 - 162
9000 Series		163 - 164
5000 Series		165 - 166
Monobloc Style		167 - 168
Cutting Ring Style .		169 - 170
Troubleshooting		

Replaceable Head Style | 7000 Series

			S	peed (SFN	1)	Recommended Feed (IPR) by Reamer Diameter					
						0.4646"	- 0.8504"	0.8505"	- 1.5590"	1.5591"	- 3.1732"
		Hardness	Uncoated			Lead	Lead	Lead	Lead	Lead	Lead
ISO	Material	(BHN)	Carbide	Carbide	Cermet	A, G	E, N, M	A, G	E, N, M	A, G	E, N, M
	Free-Machining Steel	100 - 180	33 - 66			0.010 - 0.024					
	1118, 1215, 12L14, etc.	180 - 250	23 - 49			0.012 - 0.024					
	Low-Carbon Steel	85 - 180	33 - 66			0.010 - 0.024					
	1010, 1020, 1025, 1522, 1144, etc.	180 - 275	23 - 49	131 - 230	262 - 656	0.012 - 0.024	0.016 - 0.031	0.016 - 0.031	0.020 - 0.039	0.020 - 0.035	0.024 - 0.047
	Medium-Carbon Steel	125 - 180	33 - 66	197 - 262	295 - 984	0.010 - 0.024	0.020 - 0.039	0.012 - 0.031	0.024 - 0.047	0.024 - 0.039	0.028 - 0.059
	1030, 1040, 1050, 1527, 1140, 1151, etc.	180 - 325	23 - 49	131 - 230	262 - 656	0.012 - 0.024	0.016 - 0.031	0.016 - 0.031	0.020 - 0.039	0.020 - 0.035	0.024 - 0.047
Р	Alloy Steel	125 - 180	20 - 33	131 - 197	164 - 197	0.012 - 0.024	0.016 - 0.031	0.016 - 0.031	0.020 - 0.039	0.020 - 0.035	0.024 - 0.047
P	4140, 5140, 8640, etc.	180 - 375	13 - 26	131 - 164	197 - 394	0.010 - 0.020	0.012 - 0.024	0.012 - 0.024	0.016 - 0.031	0.016 - 0.028	0.020 - 0.039
	High-Strength Alloy	240 - 450	13 - 26	131 - 164	197 - 394	0.010 - 0.020	0.012 - 0.024	0.012 - 0.024	0.016 - 0.031	0.016 - 0.028	0.020 - 0.039
	4340, 4330V, 300M, etc.										
	Structural Steel	125 - 180	33 - 66	197 - 262	295 - 984	0.010 - 0.024	0.020 - 0.039	0.012 - 0.031	0.024 - 0.047	0.024 - 0.039	0.028 - 0.059
	A36, A285, A516	180 - 350	23 - 49	131 - 230	262 - 656	0.012 - 0.024	0.016 - 0.031	0.016 - 0.031	0.020 - 0.039	0.020 - 0.035	0.024 - 0.047
	Tool Steel	150 - 200	33 - 66	197 - 262	295 - 984	0.010 - 0.024	0.020 - 0.039	0.012 - 0.031	0.024 - 0.047	0.024 - 0.039	0.028 - 0.059
	H-13, H-21, A-4, 0-2, S-3, etc.	200 - 250	23 - 49	131 - 230	262 - 656	0.012 - 0.024	0.016 - 0.031	0.016 - 0.031	0.020 - 0.039	0.020 - 0.035	0.024 - 0.047
	High-Temp Alloy	140 - 310	13 - 33	98 - 164	_	0.008 - 0.016	_	0.012 - 0.020	-	0.016 - 0.024	_
S	Hastelloy B, Inconel 600, etc.										
	Titanium Alloy	140 - 310	13 - 49	98 - 164	-	0.008 - 0.016	_	0.012 - 0.020	-	0.016 - 0.024	-
	Stainless Steel 400 Series	135 - 350	20 - 33	131 - 197	164 - 197	0.012 - 0.024	0.016 - 0.031	0.016 - 0.031	0.020 - 0.039	0.020 - 0.035	0.024 - 0.047
	416, 420, etc.										
M	Stainless Steel 300 Series	135 - 275	20 - 33	131 - 197	164 - 197	0.012 - 0.024	0.016 - 0.031	0.016 - 0.031	0.020 - 0.039	0.020 - 0.035	0.024 - 0.047
	304, 316, 17-4PH, etc.										
	Grey Cast Iron, Ductile Cast Iron,	< 200	66 - 131	394 - 656	_	0.008 - 0.024	0.020 - 0.039	0.012 - 0.028	0.024 - 0.047	0.016 - 0.031	0.031 - 0.063
К	Spheroidal Cast Iron (Pearlitic)	> 200	49 - 98	394 - 656	_	0.008 - 0.024	0.020 - 0.039	0.012 - 0.028	0.024 - 0.047	0.016 - 0.031	0.031 - 0.063
	Spheroidal Cast Iron (Ferritic)	260 - 320	33 - 49	-	295 - 459	0.008 - 0.024	0.020 - 0.024	0.012 - 0.028	0.024 - 0.047	0.016 - 0.031	0.031 - 0.063
	Copper and Alloys	< 500	197 - 656	328 - 656	-	0.008 - 0.016	_	0.012 - 0.024	_	0.016 - 0.031	_
	Brass										
Ν	Bronze	< 180	66 - 131	262 - 525	328 - 984	0.012 - 0.024	0.016 - 0.039	0.012 - 0.024	0.020 - 0.047	0.012 - 0.024	0.024 - 0.059
	Bronze Phosphorous										
	Aluminum and Alloys	< 150	66 - 328	-	_	0.012 - 0.024	_	0.016 - 0.039	-	0.016 - 0.039	_

Formulas

. RPM	= (SFM • 3.82) / DIA	2.	IPM	= RPM • IPR	3.	SFM	= RPM • 0.262 • DIA
where:			where:			where:	
RPM	= revolutions per minute (rev/min)		IPM	= inches per minute (in/min)		SFM	= speed (ft/min)
SFM	= speed (ft/min)		RPM	= revolutions per minute (rev/min)		RPM	= revolutions per minute (rev/min)
DIA	= diameter of reamer (inch)		IPR	= feed rate (in/rev)		DIA	= diameter of reamer (inch)

Stock Allowance and Coolant | Imperial (inch)

Replaceable Head Style | 7000 Series

				Recommende	ed Stock (inch) by Ream	er Diameter*
ISO	Material	Hardness (BHN)	Coolant	0.4646" - 0.8504"	0.8505" - 1.5590"	1.5591" - 3.1732"
Ρ	Free-Machining Steel 1118, 1215, 12L14, etc. Low-Carbon Steel 1010, 1020, 1025, 1522, 1144, etc. Medium-Carbon Steel 1030, 1040, 1050, 1527, 1140, 1151, etc. Alloy Steel 4140, 5140, 8640, etc. High-Strength Alloy 4340, 4330V, 300M, etc. Structural Steel A36, A285, A516 Tool Steel H-13, H-21, A-4, 0-2, S-3, etc.	2L14, etc. 180 - 250 teel 85 - 180 025, 1522, 1144, etc. 180 - 275 non Steel 125 - 180 50, 1527, 1140, 1151, etc. 180 - 325 640, etc. 180 - 375 Alloy 240 - 450 300M, etc. 125 - 180 16 180 - 350 150 - 200 4, 0-2, S-3, etc.		0.006 - 0.010	0.008 - 0.016	0.012 - 0.016
s	High-Temp Alloy Hastelloy B, Inconel 600, etc. Titanium Alloy	140 - 310 140 - 310	Water Soluble / Cutting Oil	0.006 - 0.010	0.008 - 0.016	0.012 - 0.016
м	Stainless Steel 400 Series 416, 420, etc. Stainless Steel 300 Series 304, 316, 17-4PH, etc.	135 - 350 135 - 275	Water Soluble / Cutting Oil	0.006 - 0.010	0.008 - 0.016	0.012 - 0.016
к	Grey Cast Iron, Ductile Cast Iron, Spheroidal Cast Iron (Pearlitic) Spheroidal Cast Iron (Ferritic)	< 200 > 200 260 - 320	Water Soluble / Cutting Oil	0.006 - 0.010	0.008 - 0.016	0.012 - 0.016
N	Copper and Alloys Brass Bronze Bronze Phosphorous Aluminum and Alloys	< 500 < 180 < 150	Water Soluble Water Soluble / Cutting Oil Water Soluble / Cutting Oil	0.006 - 0.010	0.008 - 0.016	0.012 - 0.016

*Stock value is on diameter.

Replaceable Head Style | 9000 Series

			S	peed (SFN	1)		Recomme	nded Feed (IF	PR) by Reame	r Diameter	
						0.4646"	- 0.8504"	0.8505"	- 1.5590"	1.5591"	- 1.5984"
ISO	Material	Hardness (BHN)	Uncoated Carbide	Coated Carbide	Cermet	Lead A, G	Lead E, N, M	Lead A, G	Lead E, N, M	Lead A, G	Lead E, N, M
	Free-Machining Steel	100 - 180	33 - 66	197 - 262	295 - 984	0.010 - 0.024	0.020 - 0.039	0.012 - 0.031	0.024 - 0.047	0.024 - 0.039	0.028 - 0.059
	1118, 1215, 12L14, etc.	180 - 250	23 - 49	131 - 230	262 - 656	0.012 - 0.024	0.016 - 0.031	0.016 - 0.031	0.020 - 0.039	0.020 - 0.035	0.024 - 0.047
	Low-Carbon Steel	85 - 180	33 - 66	197 - 262	295 - 984	0.010 - 0.024	0.020 - 0.039	0.012 - 0.031	0.024 - 0.047	0.024 - 0.039	0.028 - 0.059
	1010, 1020, 1025, 1522, 1144, etc.	180 - 275	23 - 49	131 - 230	262 - 656	0.012 - 0.024	0.016 - 0.031	0.016 - 0.031	0.020 - 0.039	0.020 - 0.035	0.024 - 0.047
	Medium-Carbon Steel	125 - 180	33 - 66	197 - 262	295 - 984	0.010 - 0.024	0.020 - 0.039	0.012 - 0.031	0.024 - 0.047	0.024 - 0.039	0.028 - 0.059
	1030, 1040, 1050, 1527, 1140, 1151, etc.	180 - 325	23 - 49	131 - 230	262 - 656	0.012 - 0.024	0.016 - 0.031	0.016 - 0.031	0.020 - 0.039	0.020 - 0.035	0.024 - 0.047
Р	Alloy Steel	125 - 180	20 - 33	131 - 197	164 - 197	0.012 - 0.024	0.016 - 0.031	0.016 - 0.031	0.020 - 0.039	0.020 - 0.035	0.024 - 0.047
P	4140, 5140, 8640, etc.	180 - 375	13 - 26	197 - 394	-	0.010 - 0.020	0.012 - 0.024	0.012 - 0.024	0.016 - 0.031	0.016 - 0.028	0.020 - 0.039
	High-Strength Alloy	240 - 450	13 - 26	197 - 394	-	0.010 - 0.020	0.012 - 0.024	0.012 - 0.024	0.016 - 0.031	0.016 - 0.028	0.020 - 0.039
	4340, 4330V, 300M, etc.										
	Structural Steel	125 - 180	33 - 66	197 - 262	295 - 984	0.010 - 0.024	0.020 - 0.039	0.012 - 0.031	0.024 - 0.047	0.024 - 0.039	0.028 - 0.059
	A36, A285, A516	180 - 350	23 - 49	131 - 230	262 - 656	0.012 - 0.024	0.016 - 0.031	0.016 - 0.031	0.020 - 0.039	0.020 - 0.035	0.024 - 0.047
	Tool Steel	150 - 200	33 - 66	197 - 262	295 - 984	0.010 - 0.024	0.020 - 0.039	0.012 - 0.031	0.024 - 0.047	0.024 - 0.039	0.028 - 0.059
	H-13, H-21, A-4, 0-2, S-3, etc.	200 - 250	23 - 49	131 - 230	262 - 656	0.012 - 0.024	0.016 - 0.031	0.016 - 0.031	0.020 - 0.039	0.020 - 0.035	0.024 - 0.047
s	High-Temp Alloy Hastelloy B, Inconel 600, etc.	140 - 310	20 - 33	49 - 98	-	0.008 - 0.016	-	0.012 - 0.020	_	0.016 - 0.024	_
5	Titanium Alloy	140 - 310	20 - 33	49 - 98	_	0.008 - 0.016	_	0.012 - 0.020	-	0.016 - 0.024	-
	Stainless Steel 400 Series	135 - 350	20 - 33	131 - 197	164 - 197	0.012 - 0.024	0.016 - 0.031	0.016 - 0.031	0.020 - 0.039	0.020 - 0.035	0.024 - 0.047
	416, 420, etc.										
Μ	Stainless Steel 300 Series	135 - 275	20 - 33	131 - 197	164 - 197	0.012 - 0.024	0.016 - 0.031	0.016 - 0.031	0.020 - 0.039	0.020 - 0.035	0.024 - 0.047
	304, 316, 17-4PH, etc.										
	Grey Cast Iron, Ductile Cast Iron,	< 200	66 - 131	394 - 656	_	0.008 - 0.024	0.020 - 0.039	0.012 - 0.028	0.024 - 0.047	0.016 - 0.031	0.031 - 0.063
К	Spheroidal Cast Iron (Pearlitic)	> 200	49 - 98	394 - 656	_					0.016 - 0.031	
	Spheroidal Cast Iron (Ferritic)	260 - 320	33 - 49	-	295 - 459	0.008 - 0.024	0.020 - 0.039	0.012 - 0.028	0.024 - 0.047	0.016 - 0.031	0.031 - 0.063
	Copper and Alloys	< 500	197 - 656	328 - 656	-	0.008 - 0.016	_	0.012 - 0.024	_	0.016 - 0.031	_
	Brass										
Ν	Bronze	< 180	66 - 131	262 - 525	328 - 984	0.012 - 0.024	0.016 - 0.039	0.012 - 0.024	0.020 - 0.047	0.012 - 0.024	0.024 - 0.059
	Bronze Phosphorous										
	Aluminum and Alloys	< 150	66 - 328	-	_	0.012 - 0.024	-	0.016 - 0.039	-	0.016 - 0.039	-

Formulas

1. RPN	М	= (SFM • 3.82) / DIA	2.	IPM	= RPM • IPR	3.	SFM	= RPM • 0.262 • DIA
whe	nere:			where:			where:	
RPN	M	= revolutions per minute (rev/min)		IPM	= inches per minute (in/min)		SFM	= speed (ft/min)
SFIV	M	= speed (ft/min)		RPM	= revolutions per minute (rev/min)		RPM	= revolutions per minute (rev/min)
DIA	4	= diameter of reamer (inch)		IPR	= feed rate (in/rev)		DIA	= diameter of reamer (inch)

Stock Allowance and Coolant | Imperial (inch)

Replaceable Head Style | 9000 Series

				Recommend	ed Stock (inch) by Ream	er Diameter*
ISO	Material	Hardness (BHN)	Coolant	0.4646" - 0.8504"	0.8505" - 1.5590"	1.5591" - 1.5984"
Ρ	Free-Machining Steel 1118, 1215, 12L14, etc. Low-Carbon Steel 1010, 1020, 1025, 1522, 1144, etc. Medium-Carbon Steel 1030, 1040, 1050, 1527, 1140, 1151, etc. Alloy Steel 4140, 5140, 8640, etc. High-Strength Alloy 4340, 4330V, 300M, etc. Structural Steel A36, A285, A516 Tool Steel H-13, H-21, A-4, 0-2, S-3, etc.	100 - 180 180 - 250 85 - 180 180 - 275 125 - 180 180 - 325 125 - 180 180 - 375 240 - 450 125 - 180 180 - 350 150 - 200 200 - 250	Water Soluble / Cutting Oil	0.006 - 0.010	0.008 - 0.016	0.012 - 0.016
s	High-Temp Alloy Hastelloy B, Inconel 600, etc. Titanium Alloy	140 - 310 140 - 310	Water Soluble / Cutting Oil	0.006 - 0.010	0.008 - 0.016	0.012 - 0.016
м	Stainless Steel 400 Series 416, 420, etc. Stainless Steel 300 Series 304, 316, 17-4PH, etc.	135 - 350 135 - 275	Water Soluble / Cutting Oil	0.006 - 0.010	0.008 - 0.016	0.012 - 0.016
к	Grey Cast Iron, Ductile Cast Iron, Spheroidal Cast Iron (Pearlitic) Spheroidal Cast Iron (Ferritic)	< 200 > 200 260 - 320	Water Soluble / Cutting Oil	0.006 - 0.010	0.008 - 0.016	0.012 - 0.016
N	Copper and Alloys Brass Bronze Bronze Phosphorous Aluminum and Alloys	< 500 < 180 < 150	Water Soluble Water Soluble / Cutting Oil Water Soluble / Cutting Oil	0.006 - 0.010	0.008 - 0.016	0.012 - 0.016

*Stock value is on diameter.

Replaceable Head Style | 5000 Series

				Speed	(SFM)			Recommen	ded Feed (IF	PR) by Ream	er Diameter	
							0.4646"	- 0.8504"	0.8505"	- 1.5590"	1.5591"	- 1.5984"
ISO	Material	Hardness (BHN)	Uncoated Carbide	Coated Carbide	Coated Cermet	Uncoated Cermet	Lead A, G	Lead E, N, M	Lead A, G	Lead E, N, M	Lead A, G	Lead E, N, M
	Free-Machining Steel	100-180	49-66	197-262	394-656	394-656	0.012-0.024	0.016-0.031	0.016-0.031	0.020-0.039	0.020-0.035	0.024-0.047
	1118, 1215, 12L14, etc.	180-250	66-131	262-328	394-656	394-656	0.012-0.024	0.016-0.031	0.016-0.031	0.020-0.039	0.020-0.035	0.024-0.047
	Low-Carbon Steel	85-180	49-66	197-262	394-656	394-656	0.012-0.024	0.016-0.031	0.016-0.031	0.020-0.039	0.020-0.035	0.024-0.047
	1010, 1020, 1025, 1522, 1144, etc.	180-275	66-131	262-328	394-656	394-656	0.012-0.024	0.016-0.031	0.016-0.031	0.020-0.039	0.020-0.035	0.024-0.047
	Medium-Carbon Steel	125-180	49-66	197-262	394-656	394-656	0.012-0.024	0.016-0.031	0.016-0.031	0.020-0.039	0.020-0.035	0.024-0.047
	1030, 1040, 1050, 1527, 1140, 1151, etc.	180-325	66-131	262-328	394-656	394-656	0.012-0.024	0.016-0.031	0.016-0.031	0.020-0.039	0.020-0.035	0.024-0.047
Р	Alloy Steel	125-180	33-49	197-262	-	328-492	0.012-0.024	0.016-0.031	0.016-0.031	0.020-0.039	0.020-0.035	0.024-0.047
P	4140, 5140, 8640, etc.	180-375	26-33	197-262	-	-	0.010-0.020	0.012-0.024	0.012-0.024	0.016-0.031	0.016-0.028	0.020-0.039
	High-Strength Alloy	240-450	26-33	197-262	-	-	0.010-0.020	0.012-0.024	0.012-0.024	0.016-0.031	0.016-0.028	0.020-0.039
	4340, 4330V, 300M, etc.											
	Structural Steel	125-180	49-66	197-262	394-656	394-656	0.012-0.024	0.016-0.031	0.016-0.031	0.020-0.039	0.020-0.035	0.024-0.047
	A36, A285, A516	180-350	66-131	262-328	394-656	394-656	0.012-0.024	0.016-0.031	0.016-0.031	0.020-0.039	0.020-0.035	0.024-0.047
	Tool Steel	150-200	49-66	197-262	394-656	394-656	0.012-0.024	0.016-0.031	0.016-0.031	0.020-0.039	0.020-0.035	0.024-0.047
	H-13, H-21, A-4, 0-2, S-3, etc.	200-250	66-131	262-328	394-656	394-656	0.012-0.024	0.016-0.031	0.016-0.031	0.020-0.039	0.020-0.035	0.024-0.047
s	High-Temp Alloy Hastelloy B, Inconel 600, etc.	140-310	16-23	66-98	-	-	0.010-0.020	0.012-0.024	0.012-0.024	0.016-0.031	0.016-0.028	0.020-0.039
	Titanium Alloy	140-310	33-49	-	-	-	0.010-0.020	0.012-0.024	0.012-0.024	0.016-0.031	0.016-0.028	0.020-0.039
	Stainless Steel 400 Series	135-350	26-33	-	-	164-197	0.010-0.020	0.012-0.024	0.012-0.024	0.016-0.031	0.016-0.028	0.020-0.039
м	416, 420, etc.											
IVI	Stainless Steel 300 Series	135-275	26-33	98-131	-	-	0.010-0.020	0.012-0.024	0.012-0.024	0.016-0.031	0.016-0.028	0.020-0.039
	304, 316, 17-4PH, etc.											
	Grey Cast Iron, Ductile Cast Iron,	< 200	66-98	492-656	-	-	0.012-0.024	0.020-0.039	0.012-0.024	0.024-0.047	0.016-0.031	0.024-0.047
К	Spheroidal Cast Iron (Pearlitic)	> 200	49-66	-	328-656	-	0.012-0.024	0.020-0.039	0.012-0.024	0.024-0.047	0.016-0.031	0.024-0.047
	Spheroidal Cast Iron (Ferritic)	260-320	49-66	-	328-394	-	0.012-0.024	0.020-0.039	0.012-0.024	0.024-0.047	0.016-0.031	0.024-0.047
	Copper and Alloys	< 500	262-328	328-656	-	-	0.012-0.024	0.016-0.031	0.016-0.031	0.020-0.039	0.020-0.035	0.024-0.047
	Brass											
Ν	Bronze	< 180	131-262	262-525	-	492-656	0.012-0.024	0.016-0.031	0.016-0.031	0.020-0.039	0.020-0.035	0.024-0.047
	Bronze Phosphorous Aluminum and Alloys	< 150	328-984	220 004	220 004	220 001	0.012.0.024	0.020.0.020	0.012.0.034	0.024-0.047	0.016.0.021	0.024.0.047
		< 150	328-984	328-984	328-984	328-984	0.012-0.024	0.020-0.039	0.012-0.024	0.024-0.047	0.010-0.031	0.024-0.047

Formulas

1	. RPM	= (SFM • 3.82) / DIA	2.	IPM	= RPM • IPR	3.	SFM	= RPM • 0.262 • DIA
	where:			where:			where:	
	RPM	= revolutions per minute (rev/min)		IPM	= inches per minute (in/min)		SFM	= speed (ft/min)
	SFM	= speed (ft/min)		RPM	= revolutions per minute (rev/min)		RPM	= revolutions per minute (rev/min)
	DIA	= diameter of reamer (inch)		IPR	= feed rate (in/rev)		DIA	= diameter of reamer (inch)

Stock Allowance and Coolant | Imperial (inch)

Replaceable Head Style | 5000 Series

				Recommende	ed Stock (inch) by Ream	er Diameter*
ISO	Material	Hardness (BHN)	Coolant	0.4646" - 0.8504"	0.8505" - 1.5590"	1.5591" - 2.3858"
Ρ	Free-Machining Steel 1118, 1215, 12L14, etc. Low-Carbon Steel 1010, 1020, 1025, 1522, 1144, etc. Medium-Carbon Steel 1030, 1040, 1050, 1527, 1140, 1151, etc. Alloy Steel 4140, 5140, 8640, etc. High-Strength Alloy 4340, 4330V, 300M, etc. Structural Steel A36, A285, A516 Tool Steel H-13, H-21, A-4, 0-2, S-3, etc.	125 - 180 1, etc. 180 - 325 125 - 180 Water S 180 - 375 Cutti 240 - 450 180 - 350 180 - 350 150 - 200 200 - 250 200 - 250		0.006 - 0.010	0.008 - 0.016	0.012 - 0.016
s	High-Temp Alloy Hastelloy B, Inconel 600, etc. Titanium Alloy	140 - 310 140 - 310	Water Soluble / Cutting Oil	0.006 - 0.010	0.008 - 0.016	0.012 - 0.016
м	Stainless Steel 400 Series 416, 420, etc. Stainless Steel 300 Series 304, 316, 17-4PH, etc.	135 - 350 135 - 275	Water Soluble / Cutting Oil	0.006 - 0.010	0.008 - 0.016	0.012 - 0.016
к	Grey Cast Iron, Ductile Cast Iron, Spheroidal Cast Iron (Pearlitic) Spheroidal Cast Iron (Ferritic)	< 200 > 200 260 - 320	Water Soluble / Cutting Oil	0.006 - 0.010	0.008 - 0.016	0.012 - 0.016
N	Copper and Alloys Brass Bronze Bronze Phosphorous Aluminum and Alloys	< 500 < 180 < 150	Water Soluble Water Soluble / Cutting Oil Water Soluble / Cutting Oil	0.006 - 0.010	0.008 - 0.016	0.012 - 0.016

*Stock value is on diameter.

Monobloc Style

			S	peed (SFM)		Recomme	nded Feed (IF	PR) by Reame	r Diameter	
						0.2283"	- 0.3940"	0.3941"	- 0.7090"	0.7091"	- 1.2638"
ISO	Material	Hardness (BHN)	Uncoated Carbide	Coated Carbide	Cermet	Lead A, G	Lead E, N, M	Lead A, G	Lead E, N, M	Lead A, G	Lead E, N, M
	Free-Machining Steel	100 - 180	25 - 50	200 - 260	300 - 980	0.008 - 0.016	0.012 - 0.024	0.016 - 0.024	0.016 - 0.047	0.020 - 0.031	0.024 - 0.047
	1118, 1215, 12L14, etc.	180 - 250	20 - 35	130 - 230	260 - 660	0.008 - 0.016	0.012 - 0.020	0.012 - 0.024	0.012 - 0.031	0.016 - 0.028	0.016 - 0.047
	Low-Carbon Steel	85 - 180	25 - 50	200 - 260	300 - 980	0.008 - 0.016	0.012 - 0.024	0.016 - 0.024	0.016 - 0.047	0.020 - 0.031	0.024 - 0.047
	1010, 1020, 1025, 1522, 1144, etc.	180 - 275	20 - 35	130 - 230	260 - 660	0.008 - 0.016	0.012 - 0.020	0.012 - 0.024	0.012 - 0.031	0.016 - 0.028	0.016 - 0.047
	Medium-Carbon Steel	125 - 180	25 - 50	200 - 260	300 - 980	0.008 - 0.016	0.012 - 0.024	0.016 - 0.024	0.016 - 0.047	0.020 - 0.031	0.024 - 0.047
	1030, 1040, 1050, 1527, 1140, 1151, etc.	180 - 325	20 - 35	130 - 230	260 - 660	0.008 - 0.016	0.012 - 0.020	0.012 - 0.024	0.012 - 0.031	0.016 - 0.028	0.016 - 0.047
P	Alloy Steel	125 - 180	20 - 35	130 - 230	260 - 660	0.008 - 0.016	0.012 - 0.024	0.016 - 0.024	0.016 - 0.047	0.020 - 0.031	0.024 - 0.047
P	4140, 5140, 8640, etc.	180 - 375	15 - 25	100 - 160	200 - 490	0.008 - 0.016	0.012 - 0.020	0.012 - 0.024	0.012 - 0.031	0.016 - 0.028	0.016 - 0.047
	High-Strength Alloy	240 - 450	10 - 20	50 - 100	200 - 390	0.006 - 0.012	0.008 - 0.016	0.008 - 0.020	0.012 - 0.024	0.012 - 0.024	0.016 - 0.031
	4340, 4330V, 300M, etc.										
	Structural Steel	125 - 180	25 - 50	200 - 260	300 - 980	0.008 - 0.016	0.012 - 0.024	0.016 - 0.024	0.016 - 0.047	0.020 - 0.031	0.024 - 0.047
	A36, A285, A516	180 - 350	20 - 35	130 - 230	260 - 660	0.008 - 0.016	0.012 - 0.020	0.012 - 0.024	0.012 - 0.031	0.016 - 0.028	.0016 - 0.047
	Tool Steel	150 - 200	25 - 50	200 - 260	300 - 980	0.008 - 0.016	0.012 - 0.024	0.016 - 0.024	0.016 - 0.047	0.020 - 0.031	0.024 - 0.047
	H-13, H-21, A-4, 0-2, S-3, etc.	200 - 250	20 - 35	130 - 230	260 - 660	0.008 - 0.016	0.012 - 0.020	0.012 - 0.024	0.012 - 0.031	0.016 - 0.028	0.016 - 0.047
s	High-Temp Alloy Hastelloy B, Inconel 600, etc.	140 - 310	15 - 25	60 - 200	-	0.006 - 0.012	-	0.008 - 0.016	-	0.012 - 0.020	_
3	Titanium Alloy	140 - 310	15 - 25	60 - 200		0.006 - 0.012		0.008 - 0.016		0.012 - 0.020	
	Intallium Alloy	140-310	13-23	00-200		0.000 - 0.012	_	0.008 - 0.010	_	0.012 - 0.020	
	Stainless Steel 400 Series	135 - 350	15 - 25	100 - 160	200 - 490	0.008 - 0.016	0.012 - 0.020	0.012 - 0.024	0.012 - 0.031	0.016 - 0.028	0.016 - 0.047
м	416, 420, etc.										
	Stainless Steel 300 Series	135 - 275	15 - 25	100 - 160	200 - 490	0.008 - 0.016	0.012 - 0.020	0.012 - 0.024	0.012 - 0.031	0.016 - 0.028	0.016 - 0.047
	304, 316, 17-4PH, etc.										
	Grey Cast Iron, Ductile Cast Iron,	< 200	50 - 100	160 - 230	_	0.008 - 0.016	0.012 - 0.024	0.014 - 0.024	0.020 - 0.031	0.016 - 0.047	0.024 - 0.059
к	Spheroidal Cast Iron (Pearlitic)	> 200	35 - 65	160 - 230	_					0.016 - 0.047	
	Spheroidal Cast Iron (Ferritic)	260 - 320	25 - 40	100 - 160	200 - 400	•				0.016 - 0.047	
		500	25.00	222 665				0.016 0.655			
	Copper and Alloys	< 500	35 - 60	330 - 660	-	0.008 - 0.016	-	0.016 - 0.028	-	0.020 - 0.031	-
	Brass										
N	Bronze	< 180	35 - 65	260 - 520	330 - 980	0.006 - 0.012	-	0.008 - 0.016	-	0.012 - 0.024	-
	Bronze Phosphorous										
	Aluminum and Alloys	< 150	50 - 100	330 - 660	_	0.008 - 0.016	-	0.016 - 0.028	-	0.020 - 0.031	_

Formulas

. RPM	= (SFM • 3.82) / DIA	2.	IPM	= RPM • IPR	3.	SFM	= RPM • 0.262 • DIA
where:			where:			where:	
RPM	= revolutions per minute (rev/min)		IPM	= inches per minute (in/min)		SFM	= speed (ft/min)
SFM	= speed (ft/min)		RPM	= revolutions per minute (rev/min)		RPM	= revolutions per minute (rev/min)
DIA	= diameter of reamer (inch)		IPR	= feed rate (in/rev)		DIA	= diameter of reamer (inch)

Stock Allowance and Coolant | Imperial (inch)

Monobloc Style

				Recommend	ed Stock (inch) by Ream	er Diameter*
ISO	Material	Hardness (BHN)	Coolant	0.2283" - 0.3940"	0.3941" - 0.7090"	0.7091" - 1.2638"
Ρ	Free-Machining Steel 1118, 1215, 12L14, etc. Low-Carbon Steel 1010, 1020, 1025, 1522, 1144, etc. Medium-Carbon Steel 1030, 1040, 1050, 1527, 1140, 1151, etc. Alloy Steel 4140, 5140, 8640, etc. High-Strength Alloy 4340, 4330V, 300M, etc. Structural Steel A36, A285, A516 Tool Steel H-13, H-21, A-4, 0-2, S-3, etc.	100 - 180 180 - 250 85 - 180 180 - 275 125 - 180 180 - 325 125 - 180 180 - 375 240 - 450 125 - 180 180 - 350 150 - 200 200 - 250	Water Soluble / Cutting Oil	0.006 - 0.012	0.008 - 0.016	0.010 - 0.020
S	High-Temp Alloy Hastelloy B, Inconel 600, etc. Titanium Alloy	140 - 310 140 - 310	Water Soluble / Cutting Oil	0.008 - 0.016	0.012 - 0.016	0.012 - 0.020
м	Stainless Steel 400 Series 416, 420, etc. Stainless Steel 300 Series 304, 316, 17-4PH, etc.	135 - 350 135 - 275	Water Soluble / Cutting Oil	0.006 - 0.012	0.008 - 0.016	0.010 - 0.020
к	Grey Cast Iron, Ductile Cast Iron, Spheroidal Cast Iron (Pearlitic) Spheroidal Cast Iron (Ferritic)	< 200 > 200 260 - 320	Water Soluble / Cutting Oil	0.006 - 0.012	0.008 - 0.016	0.010 - 0.020
N	Copper and Alloys Brass Bronze Bronze Phosphorous Aluminum and Alloys	< 500 < 180 < 150	Water Soluble Water Soluble / Cutting Oil Water Soluble / Cutting Oil	0.006 - 0.012	0.008 - 0.016	0.010 - 0.020

*Stock value is on diameter.

Cutting Ring Style

			s	Speed (SFM)			Recomme	nded Feed (IP	R) by Reame	Diameter	
						0.6929" -	- 1.5750"	1.5751"	3.1500"	3.1501"	- 7.8972"
ISO	Material	Hardness (BHN)	Uncoated Carbide	Coated Carbide	Cermet	Lead A, G	Lead E, N, M	Lead A, G	Lead E, N, M	Lead A, G	Lead E, N, M
	Free-Machining Steel	100 - 180	25 - 50	200 - 260	300 - 980	0.020 - 0.031	0.024 - 0.047	0.020 - 0.039	0.031 - 0.063	0.031 - 0.059	0.039 - 0.087
	1118, 1215, 12L14, etc.	180 - 250	20 - 35	130 - 230	260 - 660	0.016 - 0.028	0.016 - 0.039	0.020 - 0.031	0.024 - 0.055	0.031 - 0.047	0.039 - 0.079
	Low-Carbon Steel	85 - 180	25 - 50	200 - 260	300 - 980	0.020 - 0.031	0.024 - 0.047	0.020 - 0.039	0.031 - 0.063	0.031 - 0.059	0.039 - 0.087
	1010, 1020, 1025, 1522, 1144, etc.	180 - 275	20 - 35	130 - 230	260 - 660	0.016 - 0.028	0.016 - 0.039	0.020 - 0.031	0.024 - 0.055	0.031 - 0.047	0.039 - 0.079
	Medium-Carbon Steel	125 - 180	25 - 50	200 - 260	300 - 980	0.020 - 0.031	0.024 - 0.047	0.020 - 0.039	0.031 - 0.063	0.031 - 0.059	0.039 - 0.087
	1030, 1040, 1050, 1527, 1140, 1151, etc.	180 - 325	20 - 35	130 - 230	260 - 660	0.016 - 0.028	0.016 - 0.039	0.020 - 0.031	0.024 - 0.055	0.031 - 0.047	0.039 - 0.079
Р	Alloy Steel	125 - 180	20 - 35	130 - 230	260 - 660	0.020 - 0.031	0.024 - 0.047	0.020 - 0.039	0.031 - 0.063	0.031 - 0.059	0.039 - 0.087
P	4140, 5140, 8640, etc.	180 - 375	15 - 25	100 - 160	200 - 490	0.016 - 0.028	0.016 - 0.039	0.020 - 0.031	0.024 - 0.055	0.031 - 0.047	0.039 - 0.079
	High-Strength Alloy	240 - 450	10 - 20	50 - 100	200 - 390	0.012 - 0.024	0.016 - 0.031	0.016 - 0.031	0.020 - 0.039	0.024 - 0.039	0.028 - 0.055
	4340, 4330V, 300M, etc.										
	Structural Steel	125 - 180	25 - 50	200 - 260	300 - 980	0.020 - 0.031	0.024 - 0.047	0.020 - 0.039	0.031 - 0.063	0.031 - 0.059	0.039 - 0.087
	A36, A285, A516	180 - 350	20 - 35	130 - 230	260 - 660	0.016 - 0.028	0.016 - 0.039	0.020 - 0.031	0.024 - 0.055	0.031 - 0.047	0.039 - 0.079
	Tool Steel	150 - 200	25 - 50	200 - 260	300 - 980	0.020 - 0.031	0.024 - 0.047	0.020 - 0.039	0.031 - 0.063	0.031 - 0.059	0.039 - 0.087
	H-13, H-21, A-4, 0-2, S-3, etc.	200 - 250	20 - 35	130 - 230	260 - 660	0.016 - 0.028	0.016 - 0.039	0.020 - 0.031	0.024 - 0.055	0.031 - 0.047	0.039 - 0.079
s	High-Temp Alloy Hastelloy B, Inconel 600, etc.	140 - 310	15 - 25	60 - 200	_	0.012 - 0.020	-	0.016 - 0.024	_	0.020 - 0.028	-
	Titanium Alloy	140 - 310	15 - 25	60 - 200	_	0.012 - 0.020	_	0.016 - 0.024	-	0.020 - 0.028	_
	Stainless Steel 400 Series	135 - 350	15 - 25	100 - 160	200 - 490	0.016 - 0.028	0.016 - 0.039	0.020 - 0.031	0.024 - 0.055	0.031 - 0.047	0.039 - 0.079
	416, 420, etc.										
Μ	Stainless Steel 300 Series	135 - 275	15 - 25	100 - 160	200 - 490	0.016 - 0.028	0.016 - 0.039	0.020 - 0.031	0.024 - 0.055	0.031 - 0.047	0.039 - 0.079
	304, 316, 17-4PH, etc.										
	Grey Cast Iron, Ductile Cast Iron,	< 200	50 - 100	160 - 230	_	0.016 - 0.039	0.024 - 0.059	0.024 - 0.051	0.031 - 0.063	0.031 - 0.067	0.039 - 0.088
К	Spheroidal Cast Iron (Pearlitic)	> 200	35 - 65	160 - 230	_	0.016 - 0.039	0.024 - 0.059	0.024 - 0.051	0.031 - 0.063	0.031 - 0.067	0.039 - 0.088
	Spheroidal Cast Iron (Ferritic)	260 - 320	25 - 40	100 - 160	200 - 400	0.016 - 0.039	0.024 - 0.059	0.024 - 0.051	0.031 - 0.063	0.031 - 0.067	0.039 - 0.088
	Copper and Alloys	< 500	35 - 60	330 - 660	_	0.020 - 0.031	_	0.024 - 0.039	_	0.031 - 0.055	_
	Brass										
Ν	Bronze	< 180	35 - 65	260 - 520	330 - 980	0.012 - 0.024	-	0.016 - 0.031	_	0.024 - 0.039	-
	Bronze Phosphorous										
	Aluminum and Alloys	< 150	50 - 100	330 - 660	-	0.020 - 0.031	-	0.024 - 0.039	-	0.031 - 0.055	-

Formulas

1. RPM	= (SFM • 3.82) / DIA	2.	IPM	= RPM • IPR	3.	SFM	= RPM • 0.262 • DIA
where:			where:			where:	
RPM	= revolutions per minute (rev/min)		IPM	= inches per minute (in/min)		SFM	= speed (ft/min)
SFM	= speed (ft/min)		RPM	= revolutions per minute (rev/min)		RPM	= revolutions per minute (rev/min)
DIA	= diameter of reamer (inch)		IPR	= feed rate (in/rev)		DIA	= diameter of reamer (inch)

Stock Allowance and Coolant | Imperial (inch)

Cutting Ring Style

				Recommend	ed Stock (inch) by Ream	er Diameter*
ISO	Material	Hardness (BHN)	Coolant	0.6929" - 1.5750"	1.5751" - 3.1500"	3.1501" - 7.8972"
Ρ	Free-Machining Steel 1118, 1215, 12L14, etc. Low-Carbon Steel 1010, 1020, 1025, 1522, 1144, etc. Medium-Carbon Steel 1030, 1040, 1050, 1527, 1140, 1151, etc. Alloy Steel 4140, 5140, 8640, etc. High-Strength Alloy 4340, 4330V, 300M, etc. Structural Steel A36, A285, A516 Tool Steel H-13, H-21, A-4, 0-2, S-3, etc.	Low-Carbon Steel 85 - 180 1010, 1020, 1025, 1522, 1144, etc. 180 - 275 Medium-Carbon Steel 125 - 180 1030, 1040, 1050, 1527, 1140, 1151, etc. 180 - 325 Alloy Steel 125 - 180 4140, 5140, 8640, etc. 180 - 375 High-Strength Alloy 240 - 450 4340, 4330V, 300M, etc. 50 Structural Steel 125 - 180 A36, A285, A516 180 - 350 Tool Steel 150 - 200 H-13, H-21, A-4, 0-2, S-3, etc. 200 - 250 High-Temp Alloy 140 - 310		0.006 - 0.012	0.008 - 0.016	0.010 - 0.020
S	High-Temp Alloy Hastelloy B, Inconel 600, etc. Titanium Alloy	140 - 310 140 - 310	Water Soluble / Cutting Oil	0.008 - 0.016	0.012 - 0.016	0.012 - 0.020
м	Stainless Steel 400 Series 416, 420, etc. Stainless Steel 300 Series 304, 316, 17-4PH, etc.	135 - 350 135 - 275	Water Soluble / Cutting Oil	0.006 - 0.012	0.008 - 0.016	0.010 - 0.020
к	Grey Cast Iron, Ductile Cast Iron, Spheroidal Cast Iron (Pearlitic) Spheroidal Cast Iron (Ferritic)	< 200 > 200 260 - 320	Water Soluble / Cutting Oil	0.006 - 0.012	0.008 - 0.016	0.010 - 0.020
N	Copper and Alloys Brass Bronze Bronze Phosphorous Aluminum and Alloys	< 500 < 180 < 150	Water Soluble Water Soluble / Cutting Oil Water Soluble / Cutting Oil	0.006 - 0.012	0.008 - 0.016	0.010 - 0.020

*Stock value is on diameter.

Replaceable Head Style | 7000 Series

			SI	peed (m/mi	n)	1	Recommende	ed Feed (mm	/rev) by Reai	ner Diamete	r
						11.80 mm	- 21.60 mm	21.61 mm	- 39.60 mm	39.61 mm	- 80.60 mm
ISO	Material	Hardness (BHN)	Uncoated Carbide	Coated Carbide	Cermet	Lead A, G	Lead E, N, M	Lead A, G	Lead E, N, M	Lead A, G	Lead E, N, M
	Free-Machining Steel	100 - 180	10 - 20	60 - 80	90 - 300	0.25 - 0.60	0.50 - 1.00	0.30 - 0.80	0.60 - 1.20	0.60 - 1.00	0.70 - 1.50
	1118, 1215, 12L14, etc.	180 - 250	7 - 15	40 - 70	80 - 200	0.30 - 0.60	0.40 - 0.80	0.40 - 0.80	0.50 - 1.00	0.50 - 0.90	0.60 - 1.20
	Low-Carbon Steel	85 - 180	10 - 20	60 - 80	90 - 300	0.25 - 0.60	0.50 - 1.00	0.30 - 0.80	0.60 - 1.20	0.60 - 1.00	0.70 - 1.50
	1010, 1020, 1025, 1522, 1144, etc.	180 - 275	7 - 15	40 - 70	80 - 200	0.30 - 0.60	0.40 - 0.80	0.40 - 0.80	0.50 - 1.00	0.50 - 0.90	0.60 - 1.20
	Medium-Carbon Steel	125 - 180	10 - 20	60 - 80	90 - 300	0.25 - 0.60	0.50 - 1.00	0.30 - 0.80	0.60 - 1.20	0.60 - 1.00	0.70 - 1.50
	1030, 1040, 1050, 1527, 1140, 1151, etc.	180 - 325	7 - 15	40 - 70	80 - 200	0.30 - 0.60	0.40 - 0.80	0.40 - 0.80	0.50 - 1.00	0.50 - 0.90	0.60 - 1.20
Р	Alloy Steel	125 - 180	6 - 10	40 - 60	50 - 60	0.30 - 0.60	0.40 - 0.80	0.40 - 0.80	0.50 - 1.00	0.50 - 0.90	0.60 - 1.20
P	4140, 5140, 8640, etc.	180 - 375	4 - 8	40 - 50	60 - 120	0.25 - 0.50	0.30 - 0.60	0.30 - 0.60	0.40 - 0.80	0.40 - 0.70	0.50 - 1.00
	High-Strength Alloy	240 - 450	4 - 8	40 - 50	60 - 120	0.25 - 0.50	0.30 - 0.60	0.30 - 0.60	0.40 - 0.80	0.40 - 0.70	0.50 - 1.00
	4340, 4330V, 300M, etc.										
	Structural Steel	125 - 180	10 - 20	60 - 80	90 - 300	0.25 - 0.60	0.50 - 1.00	0.30 - 0.80	0.60 - 1.20	0.60 - 1.00	0.70 - 1.50
	A36, A285, A516	180 - 350	7 - 15	40 - 70	80 - 200	0.30 - 0.60	0.40 - 0.80	0.40 - 0.80	0.50 - 1.00	0.50 - 0.90	0.60 - 1.20
	Tool Steel	150 - 200	10 - 20	60 - 80	90 - 300	0.25 - 0.60	0.50 - 1.00	0.30 - 0.80	0.60 - 1.20	0.60 - 1.00	0.70 - 1.50
	H-13, H-21, A-4, 0-2, S-3, etc.	200 - 250	7 - 15	40 - 70	80 - 200	0.30 - 0.60	0.40 - 0.80	0.40 - 0.80	0.50 - 1.00	0.50 - 0.90	0.60 - 1.20
6	High-Temp Alloy	140 - 310	4 - 10	30 - 50	-	0.20 - 0.40	-	0.30 - 0.50	-	0.40 - 0.60	-
S	Hastelloy B, Inconel 600, etc. Titanium Alloy	140 - 310	4 - 15	30 - 50	_	0.20 - 0.40	_	0.30 - 0.50	_	0.40 - 0.60	_
		110 510	1 13	30 30		0.20 0.10		0.50 0.50	1	0.10 0.00	
	Stainless Steel 400 Series	135 - 350	6 - 10	40 - 60	50 - 60	0.30 - 0.60	0.40 - 0.80	0.40 - 0.80	0.50 - 1.00	0.50 - 0.90	0.60 - 1.20
м	416, 420, etc.										
	Stainless Steel 300 Series	135 - 275	6 - 10	40 - 60	50 - 60	0.30 - 0.60	0.40 - 0.80	0.40 - 0.80	0.50 - 1.00	0.50 - 0.90	0.60 - 1.20
	304, 316, 17-4PH, etc.										
	Grey Cast Iron, Ductile Cast Iron,	< 200	20 - 40	120 - 200	_	0.20 - 0.60	0.50 - 1.00	0.30 - 0.70	0.60 - 1.20	0.40 - 0.80	0.80 - 1.60
к	Spheroidal Cast Iron (Pearlitic)	> 200	15 - 30	120 - 200	_	0.20 - 0.60	0.50 - 1.00	0.30 - 0.70	0.60 - 1.20	0.40 - 0.80	0.80 - 1.60
	Spheroidal Cast Iron (Ferritic)	260 - 320	10 - 15	-	90 - 140	0.20 - 0.60	0.50 - 0.60	0.30 - 0.70	0.60 - 1.20	0.40 - 0.80	0.80 - 1.60
				400 000						0.40.0.00	
	Copper and Alloys	< 500	60 - 200	100 - 200	-	0.20 - 0.40	-	0.30 - 0.60	-	0.40 - 0.80	-
	Brass	L 100		00.465	400.000		0.40.4.65		0.50.4.55	0.00.0.00	0.00 4.55
Ν	Bronze	< 180	20 - 40	80 - 160	100 - 300	0.30 - 0.60	0.40 - 1.00	0.30 - 0.60	0.50 - 1.20	0.30 - 0.60	0.60 - 1.50
	Bronze Phosphorous										
	Aluminum and Alloys	< 150	20 - 100	-	-	0.30 - 0.60	-	0.40 - 1.00	-	0.40 - 1.00	-

Formulas

1. RPM	= m/min • 3.82 • DIA	2. mm/min	= RPM • mm/rev	3.	m/min	= RPM • 0.003 • DIA
where:		where:			where:	
RPM	= revolutions per minute (rev/min)	mm/min	= mm per minute (mm/min)		m/min	= speed (m/min)
m/min	= speed (m/min)	RPM	= revolutions per minute (rev/min)		RPM	= revolutions per minute (rev/min)
DIA	= diameter of reamer (mm)	mm/rev	= feed rate (mm/rev)		DIA	= diameter of reamer (mm)

Stock Allowance and Coolant | Metric (mm)

Replaceable Head Style | 7000 Series

				Recommend	ed Stock (mm) by Ream	er Diameter*
ISO	Material	Hardness (BHN)	Coolant	11.80 mm - 21.60 mm	21.61 mm - 39.60 mm	39.61 mm - 80.60 mm
Ρ	Free-Machining Steel 1118, 1215, 12L14, etc. Low-Carbon Steel 1010, 1020, 1025, 1522, 1144, etc. Medium-Carbon Steel 1030, 1040, 1050, 1527, 1140, 1151, etc. Alloy Steel 4140, 5140, 8640, etc. High-Strength Alloy 4340, 4330V, 300M, etc. Structural Steel A36, A285, A516 Tool Steel H-13, H-21, A-4, 0-2, S-3, etc.	100 - 180 180 - 250 85 - 180 180 - 275 125 - 180 180 - 325 125 - 180 180 - 375 240 - 450 125 - 180 180 - 350 150 - 200 200 - 250	Water Soluble / Cutting Oil	0.15 - 0.25	0.20 - 0.40	0.30 - 0.40
S	High-Temp Alloy Hastelloy B, Inconel 600, etc. Titanium Alloy	140 - 310 140 - 310	Water Soluble / Cutting Oil	0.15 - 0.25	0.20 - 0.40	0.30 - 0.40
м	Stainless Steel 400 Series 416, 420, etc. Stainless Steel 300 Series 304, 316, 17-4PH, etc.	135 - 350 135 - 275	Water Soluble / Cutting Oil	0.15 - 0.25	0.20 - 0.40	0.30 - 0.40
к	Grey Cast Iron, Ductile Cast Iron, Spheroidal Cast Iron (Pearlitic) Spheroidal Cast Iron (Ferritic)	< 200 > 200 260 - 320	Water Soluble / Cutting Oil	0.15 - 0.25	0.20 - 0.40	0.30 - 0.40
N	Copper and Alloys Brass Bronze Bronze Phosphorous Aluminum and Alloys	< 500 < 180 < 150	Water Soluble Water Soluble / Cutting Oil Water Soluble / Cutting Oil	0.15 - 0.25	0.20 - 0.40	0.30 - 0.40

*Stock value is on diameter.

Replaceable Head Style | 9000 Series

			Spo	eed (m/m	in)		Recommend	ed Feed (mm	/rev) by Rean	ner Diameter	
						11.80 mm	- 21.60 mm	21.61 mm	- 39.60 mm	39.61 mm	- 40.60 mm
ISO	Material	Hardness (BHN)	Uncoated Carbide	Coated Carbide	Cermet	Lead A, G	Lead E, N, M	Lead A, G	Lead E, N, M	Lead A, G	Lead E, N, M
	Free-Machining Steel	100 - 180	10 - 20	60 - 80	90 - 300	0.25 - 0.60	0.50 - 1.00	0.30 - 0.80	0.60 - 1.20	0.60 - 1.00	0.70 - 1.50
	1118, 1215, 12L14, etc.	180 - 250	7 - 15	40 - 70	80 - 200	0.30 - 0.60	0.40 - 0.80	0.40 - 0.80	0.50 - 1.00	0.50 - 0.90	0.60 - 1.20
	Low-Carbon Steel	85 - 180	10 - 20	60 - 80	90 - 300	0.25 - 0.60	0.50 - 1.00	0.30 - 0.80	0.60 - 1.20	0.60 - 1.00	0.70 - 1.50
	1010, 1020, 1025, 1522, 1144, etc.	180 - 275	7 - 15	40 - 70	80 - 200	0.30 - 0.60	0.40 - 0.80	0.40 - 0.80	0.50 - 1.00	0.50 - 0.90	0.60 - 1.20
	Medium-Carbon Steel	125 - 180	10 - 20	60 - 80	90 - 300	0.25 - 0.60	0.50 - 1.00	0.30 - 0.80	0.60 - 1.20	0.60 - 1.00	0.70 - 1.50
	1030, 1040, 1050, 1527, 1140, 1151, etc.	180 - 325	7 - 15	40 - 70	80 - 200	0.30 - 0.60	0.40 - 0.80	0.40 - 0.80	0.50 - 1.00	0.50 - 0.90	0.60 - 1.20
Р	Alloy Steel	125 - 180	6 - 10	40 - 60	50 - 60	0.30 - 0.60	0.40 - 0.80	0.40 - 0.80	0.50 - 1.00	0.50 - 0.90	0.60 - 1.20
P	4140, 5140, 8640, etc.	180 - 375	4 - 8	60 - 120	-	0.25 - 0.50	0.30 - 0.60	0.30 - 0.60	0.40 - 0.80	0.40 - 0.70	0.50 - 1.00
	High-Strength Alloy	240 - 450	4 - 8	60 - 120	-	0.25 - 0.50	0.30 - 0.60	0.30 - 0.60	0.40 - 0.80	0.40 - 0.70	0.50 - 1.00
	4340, 4330V, 300M, etc.										
	Structural Steel	125 - 180	10 - 20	60 - 80	90 - 300	0.25 - 0.60	0.50 - 1.00	0.30 - 0.80	0.60 - 1.20	0.60 - 1.00	0.70 - 1.50
	A36, A285, A516	180 - 350	7 - 15	40 - 70	80 - 200	0.30 - 0.60	0.40 - 0.80	0.40 - 0.80	0.50 - 1.00	0.50 - 0.90	0.60 - 1.20
	Tool Steel	150 - 200	10 - 20	60 - 80	90 - 300	0.25 - 0.60	0.50 - 1.00	0.30 - 0.80	0.60 - 1.20	0.60 - 1.00	0.70 - 1.50
	H-13, H-21, A-4, 0-2, S-3, etc.	200 - 250	7 - 15	40 - 70	80 - 200	0.30 - 0.60	0.40 - 0.80	0.40 - 0.80	0.50 - 1.00	0.50 - 0.90	0.60 - 1.20
s	High-Temp Alloy Hastelloy B, Inconel 600, etc.	140 - 310	6 - 10	15 - 30	-	0.20 - 0.40	-	0.30 - 0.50	-	0.40 - 0.60	-
	Titanium Alloy	140 - 310	6 - 10	15 - 30	-	0.20 - 0.40	-	0.30 - 0.50	-	0.40 - 0.60	-
	Stainless Steel 400 Series 416, 420, etc.	135 - 350	6 - 10	40 - 60	50 - 60	0.30 - 0.60	0.40 - 0.80	0.40 - 0.80	0.50 - 1.00	0.50 - 0.90	0.60 - 1.20
M	Stainless Steel 300 Series	135 - 275	6 - 10	40 - 60	50 - 60	0.30 - 0.60	0.40 - 0.80	0.40 - 0.80	0.50 - 1.00	0.50 - 0.90	0.60 - 1.20
		155-275	0-10	40 - 00	50-00	0.50 - 0.00	0.40 - 0.80	0.40 - 0.60	0.50 - 1.00	0.50 - 0.90	0.00 - 1.20
	304, 316, 17-4PH, etc.										
	Grey Cast Iron, Ductile Cast Iron,	< 200	20 - 40	120 - 200	-	0.20 - 0.60	0.50 - 1.00	0.30 - 0.70	0.60 - 1.20	0.40 - 0.80	0.80 - 1.60
K	Spheroidal Cast Iron (Pearlitic)	> 200	15 - 30	120 - 200	-	0.20 - 0.60	0.50 - 1.00	0.30 - 0.70	0.60 - 1.20	0.40 - 0.80	0.80 - 1.60
	Spheroidal Cast Iron (Ferritic)	260 - 320	10 - 15	-	90 - 140	0.20 - 0.60	0.50 - 1.00	0.30 - 0.70	0.60 - 1.20	0.40 - 0.80	0.80 - 1.60
	Copper and Alloys	< 500	60 - 200	100 - 200	_	0.20 - 0.40	_	0.30 - 0.60	_	0.40 - 0.80	_
	Brass										
Ν	Bronze	< 180	20 - 40	80 - 160	100 - 300	0.30 - 0.60	0.40 - 1.00	0.30 - 0.60	0.50 - 1.20	0.30 - 0.60	0.60 - 1.50
	Bronze Phosphorous	< 150	20 100		_	0.20 0.60		0.40 1.00	_	0.40 1.00	
	Aluminum and Alloys	< 150	20 - 100	_		0.30 - 0.60		0.40 - 1.00		0.40 - 1.00	-

Formulas

1.	RPM	= m/min • 3.82 • DIA	2.	mm/min	= RPM • mm/rev	3.	m/min	= RPM • 0.003 • DIA
	where:			where:			where:	
	RPM	= revolutions per minute (rev/min)		mm/min	= mm per minute (mm/min)		m/min	= speed (m/min)
	m/min	= speed (m/min)		RPM	= revolutions per minute (rev/min)		RPM	= revolutions per minute (rev/min)
	DIA	= diameter of reamer (mm)		mm/rev	= feed rate (mm/rev)		DIA	= diameter of reamer (mm)

Stock Allowance and Coolant | Metric (mm)

Replaceable Head Style | 9000 Series

				Recommend	ed Stock (mm) by Ream	er Diameter*
ISO	Material	Hardness (BHN)	Coolant	11.80 mm - 21.60 mm	21.61 mm - 39.60 mm	39.61 mm - 40.60 mm
Ρ	Free-Machining Steel 1118, 1215, 12L14, etc. Low-Carbon Steel 1010, 1020, 1025, 1522, 1144, etc. Medium-Carbon Steel 1030, 1040, 1050, 1527, 1140, 1151, etc. Alloy Steel 4140, 5140, 8640, etc. High-Strength Alloy 4340, 4330V, 300M, etc. Structural Steel A36, A285, A516 Tool Steel H-13, H-21, A-4, 0-2, S-3, etc.	100 - 180 180 - 250 85 - 180 180 - 275 125 - 180 180 - 325 125 - 180 180 - 375 240 - 450 125 - 180 180 - 350 150 - 200 200 - 250	Water Soluble / Cutting Oil	0.15 - 0.25	0.20 - 0.40	0.30 - 0.40
S	High-Temp Alloy Hastelloy B, Inconel 600, etc. Titanium Alloy	140 - 310 140 - 310	Water Soluble / Cutting Oil	0.15 - 0.25	0.20 - 0.40	0.30 - 0.40
м	Stainless Steel 400 Series 416, 420, etc. Stainless Steel 300 Series 304, 316, 17-4PH, etc.	135 - 350 135 - 275	Water Soluble / Cutting Oil	0.15 - 0.25	0.20 - 0.40	0.30 - 0.40
к	Grey Cast Iron, Ductile Cast Iron, Spheroidal Cast Iron (Pearlitic) Spheroidal Cast Iron (Ferritic)	< 200 > 200 260 - 320	Water Soluble / Cutting Oil	0.15 - 0.25	0.20 - 0.40	0.30 - 0.40
N	Copper and Alloys Brass Bronze Bronze Phosphorous Aluminum and Alloys	< 500 < 180 < 150	Water Soluble Water Soluble / Cutting Oil Water Soluble / Cutting Oil	0.15 - 0.25	0.20 - 0.40	0.30 - 0.40

*Stock value is on diameter.

Replaceable Head Style | 5000 Series

			Speed (m/min)				R	ecommende	d Feed (mm	/rev) by Rea	mer Diamet	er
							9.61 mm -	17.60 mm	17.61 mm	- 26.60 mm	26.61 mm	- 32.60 mm
ISO	Material	Hardness (BHN)	Uncoated Carbide	Coated Carbide	Coated Cermet	Uncoated Cermet	Lead A, G	Lead E, N, M	Lead A, G	Lead E, N, M	Lead A, G	Lead E, N, M
	Free-Machining Steel	100-180	15 - 20	60 - 80	120 - 200	120 - 200	0.30 - 0.60	0.40 - 0.80	0.40 - 0.80	0.50 - 1.00	0.50 - 0.90	0.60 - 1.20
	1118, 1215, 12L14, etc.	180-250	20 - 40	80 - 100	120 - 200	120 - 200	0.30 - 0.60	0.40 - 0.80	0.40 - 0.80	0.50 - 1.00	0.50 - 0.90	0.60 - 1.20
	Low-Carbon Steel	85-180	15 - 20	60 - 80	120 - 200	120 - 200	0.30 - 0.60	0.40 - 0.80	0.40 - 0.80	0.50 - 1.00	0.50 - 0.90	0.60 - 1.20
	1010, 1020, 1025, 1522, 1144, etc.	180-275	20 - 40	80 - 100	120 - 200	120 - 200	0.30 - 0.60	0.40 - 0.80	0.40 - 0.80	0.50 - 1.00	0.50 - 0.90	0.60 - 1.20
	Medium-Carbon Steel	125-180	15 - 20	60 - 80	120 - 200	120 - 200	0.30 - 0.60	0.40 - 0.80	0.40 - 0.80	0.50 - 1.00	0.50 - 0.90	0.60 - 1.20
	1030, 1040, 1050, 1527, 1140, 1151, etc.	180-325	20 - 40	80 - 100	120 - 200	120 - 200	0.30 - 0.60	0.40 - 0.80	0.40 - 0.80	0.50 - 1.00	0.50 - 0.90	0.60 - 1.20
Р	Alloy Steel	125-180	10 - 15	60 - 80	-	100 - 150	0.30 - 0.60	0.40 - 0.80	0.40 - 0.80	0.50 - 1.00	0.50 - 0.90	0.60 - 1.20
P	4140, 5140, 8640, etc.	180-375	8 - 10	60 - 80	-	-	0.25 - 0.50	0.30 - 0.60	0.30 - 0.60	0.40 - 0.80	0.40 - 0.70	0.50 - 1.00
	High-Strength Alloy	240-450	8 - 10	60 - 80	-	-	0.25 - 0.50	0.30 - 0.60	0.30 - 0.60	0.40 - 0.80	0.40 - 0.70	0.50 - 1.00
	4340, 4330V, 300M, etc.											
	Structural Steel	125-180	15 - 20	60 - 80	120 - 200	120 - 200	0.30 - 0.60	0.40 - 0.80	0.40 - 0.80	0.50 - 1.00	0.50 - 0.90	0.60 - 1.20
	A36, A285, A516	180-350	20 - 40	80 - 100	120 - 200	120 - 200	0.30 - 0.60	0.40 - 0.80	0.40 - 0.80	0.50 - 1.00	0.50 - 0.90	0.60 - 1.20
	Tool Steel	150-200	15 - 20	60 - 80	120 - 200	120 - 200	0.30 - 0.60	0.40 - 0.80	0.40 - 0.80	0.50 - 1.00	0.50 - 0.90	0.60 - 1.20
	H-13, H-21, A-4, 0-2, S-3, etc.	200-250	20 - 40	80 - 100	120 - 200	120 - 200	0.30 - 0.60	0.40 - 0.80	0.40 - 0.80	0.50 - 1.00	0.50 - 0.90	0.60 - 1.20
s	High-Temp Alloy Hastelloy B, Inconel 600, etc.	140-310	5 - 7	20 - 30	-	-	0.25 - 0.50	0.30 - 0.60	0.30 - 0.60	0.40 - 0.80	0.40 - 0.70	0.50 - 1.00
5	Titanium Alloy	140-310	10 - 15	-	-	-	0.25 - 0.50	0.30 - 0.60	0.30 - 0.60	0.40 - 0.80	0.40 - 0.70	0.50 - 1.00
	Stainless Steel 400 Series	135-350	8 - 10	-	-	50 - 60	0.25 - 0.50	0.30 - 0.60	0.30 - 0.60	0.40 - 0.80	0.40 - 0.70	0.50 - 1.00
м	416, 420, etc.											
141	Stainless Steel 300 Series	135-275	8 - 10	30 - 40	-	-	0.25 - 0.50	0.30 - 0.60	0.30 - 0.60	0.40 - 0.80	0.40 - 0.70	0.50 - 1.00
	304, 316, 17-4PH, etc.											
	Grey Cast Iron, Ductile Cast Iron,	< 200	20 - 30	150 - 200	-	-	0.30 - 0.60	0.50 - 1.00	0.30 - 0.60	0.60 - 1.20	0.40 - 0.80	0.60 - 1.20
К	Spheroidal Cast Iron (Pearlitic)	> 200	15 - 20	-	100 - 200	-	0.30 - 0.60	0.50 - 1.00	0.30 - 0.60	0.60 - 1.20	0.40 - 0.80	0.60 - 1.20
	Spheroidal Cast Iron (Ferritic)	260-320	15 - 20	-	100 - 120	-	0.30 - 0.60	0.50 - 1.00	0.30 - 0.60	0.60 - 1.20	0.40 - 0.80	0.60 - 1.20
	Copper and Alloys	< 500	80 - 100	100 - 200	-	-	0.30 - 0.60	0.40 - 0.80	0.40 - 0.80	0.50 - 1.00	0.50 - 0.90	0.60 - 1.20
	Brass											
Ν	Bronze	< 180	40 - 80	80 - 160	-	150 - 200	0.30 - 0.60	0.40 - 0.80	0.40 - 0.80	0.50 - 1.00	0.50 - 0.90	0.60 - 1.20
	Bronze Phosphorous	450	100.000	400.000	100.000	100.000		0.50.4.00		0.00.4.00		0.00.4.00
	Aluminum and Alloys	< 150	100 - 300	100 - 300	100 - 300	100 - 300	0.30 - 0.60	0.50 - 1.00	0.30 - 0.60	0.60 - 1.20	0.40 - 0.80	0.60 - 1.20

Formulas

1	RPM	= m/min • 3.82 • DIA	2.	mm/min	= RPM • mm/rev	3.	m/min	= RPM • 0.003 • DIA
	where:			where:			where:	
	RPM	= revolutions per minute (rev/min)		mm/min	= mm per minute (mm/min)		m/min	= speed (m/min)
	m/min	= speed (m/min)		RPM	= revolutions per minute (rev/min)		RPM	= revolutions per minute (rev/min)
	DIA	= diameter of reamer (mm)		mm/rev	= feed rate (mm/rev)		DIA	= diameter of reamer (mm)

Stock Allowance and Coolant | Metric (mm)

Replaceable Head Style | 5000 Series

				Recommend	ed Stock (mm) by Ream	er Diameter*
ISO	Material	Hardness (BHN)	Coolant	9.61 mm - 17.60 mm	17.61 mm - 26.60 mm	26.61 mm - 32.60 mm
Ρ	Free-Machining Steel 1118, 1215, 12L14, etc. Low-Carbon Steel 1010, 1020, 1025, 1522, 1144, etc. Medium-Carbon Steel 1030, 1040, 1050, 1527, 1140, 1151, etc. Alloy Steel 4140, 5140, 8640, etc. High-Strength Alloy 4340, 4330V, 300M, etc. Structural Steel A36, A285, A516 Tool Steel H-13, H-21, A-4, 0-2, S-3, etc.	100 - 180 180 - 250 85 - 180 180 - 275 125 - 180 180 - 325 125 - 180 180 - 375 240 - 450 125 - 180 180 - 350 150 - 200 200 - 250	Water Soluble / Cutting Oil	0.15 - 0.25	0.20 - 0.40	0.30 - 0.40
S	High-Temp Alloy Hastelloy B, Inconel 600, etc. Titanium Alloy	140 - 310 140 - 310	Water Soluble / Cutting Oil	0.15 - 0.25	0.20 - 0.40	0.30 - 0.40
м	Stainless Steel 400 Series 416, 420, etc. Stainless Steel 300 Series 304, 316, 17-4PH, etc.	135 - 350 135 - 275	Water Soluble / Cutting Oil	0.15 - 0.25	0.20 - 0.40	0.30 - 0.40
к	Grey Cast Iron, Ductile Cast Iron, Spheroidal Cast Iron (Pearlitic) Spheroidal Cast Iron (Ferritic)	< 200 > 200 260 - 320	Water Soluble / Cutting Oil	0.15 - 0.25	0.20 - 0.40	0.30 - 0.40
N	Copper and Alloys Brass Bronze Bronze Phosphorous Aluminum and Alloys	< 500 < 180 < 150	Water Soluble Water Soluble / Cutting Oil Water Soluble / Cutting Oil	0.15 - 0.25	0.20 - 0.40	0.30 - 0.40

*Stock value is on diameter.

Monobloc Style

			Sp	peed (m/mi	n)		Recommende	ed Feed (mm	/rev) by Rear	ner Diamete	r
						5.80 mm -	10.00 mm	10.01 mm	- 22.00 mm	22.01 mm	- 32.10 mm
ISO	Material	Hardness (BHN)	Uncoated Carbide	Coated Carbide	Cermet	Lead A, G	Lead E, N, M	Lead A, G	Lead E, N, M	Lead A, G	Lead E, N, M
	Free-Machining Steel	100 - 180	7 - 15	60 - 80	90 - 300	0.20 - 0.40	0.30 - 0.60	0.40 - 0.60	0.40 - 1.00	0.50 - 0.80	0.60 - 1.20
	1118, 1215, 12L14, etc.	180 - 250	6 - 10	40 - 70	80 - 200	0.20 - 0.40	0.30 - 0.50	0.30 - 0.60	0.30 - 0.80	0.40 - 0.70	0.40 - 1.00
	Low-Carbon Steel	85 - 180	7 - 15	60 - 80	90 - 300	0.20 - 0.40	0.30 - 0.60	0.40 - 0.60	0.40 - 1.00	0.50 - 0.80	0.60 - 1.20
	1010, 1020, 1025, 1522, 1144, etc.	180 - 275	6 - 10	40 - 70	80 - 200	0.20 - 0.40	0.30 - 0.50	0.30 - 0.60	0.30 - 0.80	0.40 - 0.70	0.40 - 1.00
	Medium-Carbon Steel	125 - 180	7 - 15	60 - 80	90 - 300	0.20 - 0.40	0.30 - 0.60	0.40 - 0.60	0.40 - 1.00	0.50 - 0.80	0.60 - 1.20
	1030, 1040, 1050, 1527, 1140, 1151, etc.	180 - 325	6 - 10	40 - 70	80 - 200	0.20 - 0.40	0.30 - 0.50	0.30 - 0.60	0.30 - 0.80	0.40 - 0.70	0.40 - 1.00
Р	Alloy Steel	125 - 180	6 - 10	40 - 70	80 - 200	0.20 - 0.40	0.30 - 0.60	0.40 - 0.60	0.40 - 1.00	0.50 - 0.80	0.60 - 1.20
P	4140, 5140, 8640, etc.	180 - 375	4 - 8	30 - 50	60 - 150	0.20 - 0.40	0.30 - 0.50	0.30 - 0.60	0.30 - 0.80	0.40 - 0.70	0.40 - 1.00
	High-Strength Alloy	240 - 450	3 - 6	15 - 30	60 - 120	0.15 - 0.30	0.20 - 0.40	0.20 - 0.50	0.30 - 0.60	0.30 - 0.60	0.40 - 0.80
	4340, 4330V, 300M, etc.										
	Structural Steel	125 - 180	7 - 15	60 - 80	90 - 300	0.20 - 0.40	0.30 - 0.60	0.40 - 0.60	0.40 - 1.00	0.50 - 0.80	0.60 - 1.20
	A36, A285, A516	180 - 350	6 - 10	40 - 70	80 - 200	0.20 - 0.40	0.30 - 0.50	0.30 - 0.60	0.30 - 0.80	0.40 - 0.70	0.40 - 1.00
	Tool Steel	150 - 200	7 - 15	60 - 80	90 - 300	0.20 - 0.40	0.30 - 0.60	0.40 - 0.60	0.40 - 1.00	0.50 - 0.80	0.60 - 1.20
	H-13, H-21, A-4, 0-2, S-3, etc.	200 - 250	6 - 10	40 - 70	80 - 200	0.20 - 0.40	0.30 - 0.50	0.30 - 0.60	0.30 - 0.80	0.40 - 0.70	0.40 - 1.00
6	High-Temp Alloy	140 - 310	4 - 10	30 - 50	-	0.15 - 0.30	-	0.20 - 0.40	-	0.30 - 0.50	-
S	Hastelloy B, Inconel 600, etc. Titanium Alloy	140 - 310	4 - 15	30 - 50	_	0.15 - 0.30	_	0.20 - 0.40	_	0.30 - 0.50	
	Intanium Alloy	140 - 510	4-15	50-50	-	0.15 - 0.50	-	0.20 - 0.40	_	0.50 - 0.50	_
	Stainless Steel 400 Series	135 - 350	4 - 10	30 - 50	60 - 150	0.20 - 0.40	0.30 - 0.50	0.30 - 0.60	0.30 - 0.80	0.40 - 0.70	0.40 - 1.00
	416, 420, etc.										
M	Stainless Steel 300 Series	135 - 275	4 - 10	30 - 50	60 - 150	0.20 - 0.40	0.30 - 0.50	0.30 - 0.60	0.30 - 0.80	0.40 - 0.70	0.40 - 1.00
	304, 316, 17-4PH, etc.										
	Grey Cast Iron, Ductile Cast Iron,	< 200	15 - 30	50 - 70	-	0.20 - 0.40	0.30 - 0.60	0.35 - 0.60	0.50 - 0.80	0.40 - 1.00	0.60 - 1.50
К	Spheroidal Cast Iron (Pearlitic)	> 200	10 - 20	50 - 70	-	0.20 - 0.40	0.30 - 0.60	0.35 - 0.60	0.50 - 0.80	0.40 - 1.00	0.60 - 1.50
	Spheroidal Cast Iron (Ferritic)	260 - 320	8 - 12	30 - 50	60 - 120	0.20 - 0.40	0.30 - 0.60	0.35 - 0.60	0.50 - 0.80	0.40 - 1.00	0.60 - 1.50
	Copper and Allows	< 500	10 - 18	100 - 200	_	0.20 - 0.40	_	0.40 - 0.70	_	0.50 - 0.80	_
	Copper and Alloys Brass	< 500	10-18	100 - 200	_	0.20 - 0.40	_	0.40 - 0.70	_	0.50 - 0.80	_
N		< 100	10.20	90 160	100 200	0.15 0.20		0.20 0.40		0.20 0.00	
N	Bronze	< 180	10 - 20	80 - 160	100 - 300	0.15 - 0.30	-	0.20 - 0.40	-	0.30 - 0.60	-
	Bronze Phosphorous	< 150	15 20	100 200		0.20 0.40		0.40 0.70		0.50 0.80	
	Aluminum and Alloys	< 150	15 - 30	100 - 200	-	0.20 - 0.40	-	0.40 - 0.70	-	0.50 - 0.80	-

Formulas

1.	RPM	= m/min • 3.82 • DIA	2.	mm/min	= RPM • mm/rev	3.	m/min	= RPM • 0.003 • DIA
	where:			where:			where:	
	RPM	= revolutions per minute (rev/min)		mm/min	= mm per minute (mm/min)		m/min	= speed (m/min)
	m/min	= speed (m/min)		RPM	= revolutions per minute (rev/min)		RPM	= revolutions per minute (rev/min)
	DIA	= diameter of reamer (mm)		mm/rev	= feed rate (mm/rev)		DIA	= diameter of reamer (mm)

Stock Allowance and Coolant | Metric (mm)

Monobloc Style

				Recommend	ed Stock (mm) by Ream	er Diameter*
ISO	Material	Hardness (BHN)	Coolant	5.80 mm - 10.00 mm	10.01 mm - 22.00 mm	22.01 mm - 32.10 mm
Ρ	Free-Machining Steel 1118, 1215, 12L14, etc. Low-Carbon Steel 1010, 1020, 1025, 1522, 1144, etc. Medium-Carbon Steel 1030, 1040, 1050, 1527, 1140, 1151, etc. Alloy Steel 4140, 5140, 8640, etc. High-Strength Alloy 4340, 4330V, 300M, etc. Structural Steel A36, A285, A516 Tool Steel H-13, H-21, A-4, 0-2, S-3, etc.	100 - 180 180 - 250 85 - 180 180 - 275 125 - 180 180 - 325 125 - 180 180 - 375 240 - 450 125 - 180 180 - 350 150 - 200 200 - 250	Water Soluble / Cutting Oil	0.08 - 0.15	0.15 - 0.25	0.15 - 0.30
S	High-Temp Alloy Hastelloy B, Inconel 600, etc. Titanium Alloy	140 - 310 140 - 310	Water Soluble / Cutting Oil	0.10 - 0.20	0.15 - 0.25	0.20 - 0.40
м	Stainless Steel 400 Series 416, 420, etc. Stainless Steel 300 Series 304, 316, 17-4PH, etc.	135 - 350 135 - 275	Water Soluble / Cutting Oil	0.08 - 0.15	0.15 - 0.25	0.15 - 0.30
к	Grey Cast Iron, Ductile Cast Iron, Spheroidal Cast Iron (Pearlitic) Spheroidal Cast Iron (Ferritic)	< 200 > 200 260 - 320	Water Soluble / Cutting Oil	0.08 - 0.15	0.15 - 0.25	0.15 - 0.30
N	Copper and Alloys Brass Bronze Bronze Phosphorous Aluminum and Alloys	< 500 < 180 < 150	Water Soluble Water Soluble / Cutting Oil Water Soluble / Cutting Oil	0.08 - 0.15	0.15 - 0.25	0.15 - 0.30

*Stock value is on diameter.

Cutting Ring Style

			Sp	peed (m/mi	n)	1	Recommende	ed Feed (mm	/rev) by Rear	ner Diamete	r
						17.60 mm	- 40.00 mm	40.01 mm	- 80.00 mm	80.01 mm -	200.00 mm
ISO	Material	Hardness (BHN)	Uncoated Carbide	Coated Carbide	Cermet	Lead A, G	Lead E, N, M	Lead A, G	Lead E, N, M	Lead A, G	Lead E, N, M
	Free-Machining Steel	100 - 180	7 - 15	60 - 80	90 - 300	0.50 - 0.80	0.60 - 1.20	0.50 - 1.00	0.80 - 1.60	0.80 - 1.50	1.00 - 2.20
	1118, 1215, 12L14, etc.	180 - 250	6 - 10	40 - 70	80 - 200	0.40 - 0.70	0.40 - 1.00	0.50 - 0.80	0.60 - 1.40	0.80 - 1.20	1.00 - 2.00
	Low-Carbon Steel	85 - 180	7 - 15	60 - 80	90 - 300	0.50 - 0.80	0.60 - 1.20	0.50 - 1.00	0.80 - 1.60	0.80 - 1.50	1.00 - 2.20
	1010, 1020, 1025, 1522, 1144, etc.	180 - 275	6 - 10	40 - 70	80 - 200	0.40 - 0.70	0.40 - 1.00	0.50 - 0.80	0.60 - 1.40	0.80 - 1.20	1.00 - 2.00
	Medium-Carbon Steel	125 - 180	7 - 15	60 - 80	90 - 300	0.50 - 0.80	0.60 - 1.20	0.50 - 1.00	0.80 - 1.60	0.80 - 1.50	1.00 - 2.20
	1030, 1040, 1050, 1527, 1140, 1151, etc.	180 - 325	6 - 10	40 - 70	80 - 200	0.40 - 0.70	0.40 - 1.00	0.50 - 0.80	0.60 - 1.40	0.80 - 1.20	1.00 - 2.00
Р	Alloy Steel	125 - 180	6 - 10	40 - 70	80 - 200	0.50 - 0.80	0.60 - 1.20	0.50 - 1.00	0.80 - 1.60	0.80 - 1.50	1.00 - 2.20
P	4140, 5140, 8640, etc.	180 - 375	4 - 8	30 - 50	60 - 150	0.40 - 0.70	0.40 - 1.00	0.50 - 0.80	0.60 - 1.40	0.80 - 1.20	1.00 - 2.00
	High-Strength Alloy	240 - 450	3 - 6	15 - 30	60 - 120	0.30 - 0.60	0.40 - 0.80	0.40 - 0.80	0.50 - 1.00	0.60 - 1.00	0.70 - 1.40
	4340, 4330V, 300M, etc.										
	Structural Steel	125 - 180	7 - 15	60 - 80	90 - 300	0.50 - 0.80	0.60 - 1.20	0.50 - 1.00	0.80 - 1.60	0.80 - 1.50	1.00 - 2.20
	A36, A285, A516	180 - 350	6 - 10	40 - 70	80 - 200	0.40 - 0.70	0.40 - 1.00	0.50 - 0.80	0.60 - 1.40	0.80 - 1.20	1.00 - 2.00
	Tool Steel	150 - 200	7 - 15	60 - 80	90 - 300	0.50 - 0.80	0.60 - 1.20	0.50 - 1.00	0.80 - 1.60	0.80 - 1.50	1.00 - 2.20
	H-13, H-21, A-4, 0-2, S-3, etc.	200 - 250	6 - 10	40 - 70	80 - 200	0.40 - 0.70	0.40 - 1.00	0.50 - 0.80	0.60 - 1.40	0.80 - 1.20	1.00 - 2.00
	High-Temp Alloy	140 - 310	4 - 8	30 - 50	-	0.30 - 0.50	-	0.40 - 0.60	-	0.50 - 0.70	-
S	Hastelloy B, Inconel 600, etc.										
	Titanium Alloy	140 - 310	4 - 8	30 - 50	-	0.30 - 0.50	_	0.40 - 0.60	-	0.50 - 0.70	-
	Stainless Steel 400 Series	135 - 350	4 - 8	30 - 50	60 - 150	0.40 - 0.70	0.40 - 1.00	0.50 - 0.80	0.60 - 1.40	0.80 - 1.20	1.00 - 2.00
	416, 420, etc.										
Μ	Stainless Steel 300 Series	135 - 275	4 - 8	30 - 50	60 - 150	0.40 - 0.70	0.40 - 1.00	0.50 - 0.80	0.60 - 1.40	0.80 - 1.20	1.00 - 2.00
	304, 316, 17-4PH, etc.										
	Grey Cast Iron, Ductile Cast Iron,	< 200	15 - 30	50 - 70	_	0.40 - 1.00	0.60 - 1.50	0.60 - 1.30	0.80 - 1.60	0.80 - 1.70	1.00 - 2.25
К	Spheroidal Cast Iron (Pearlitic)	> 200	10 - 20	50 - 70	-	0.40 - 1.00	0.60 - 1.50	0.60 - 1.30	0.80 - 1.60	0.80 - 1.70	1.00 - 2.25
	Spheroidal Cast Iron (Ferritic)	260 - 320	8 - 12	30 - 50	60 - 120	0.40 - 1.00	0.60 - 1.50	0.60 - 1.30	0.80 - 1.60	0.80 - 1.70	1.00 - 2.25
	Comparend Allow	< 500	10 - 18	100 200	_	0.50 0.80	_	0.60 1.00	_	0.90 1.40	
	Copper and Alloys Brass	< 500	10 - 18	100 - 200	-	0.50 - 0.80	_	0.60 - 1.00	-	0.80 - 1.40	-
N		< 190	10 20	90 160	100 200	0.20 0.00		0.40.0.00		0.60 1.00	
N	Bronze	< 180	10 - 20	80 - 160	100 - 300	0.30 - 0.60	_	0.40 - 0.80	-	0.60 - 1.00	-
	Bronze Phosphorous	< 150	15 20	100 200		0.50.0.00		0.60 1.00		0.00 1.40	
	Aluminum and Alloys	< 150	15 - 30	100 - 200	-	0.50 - 0.80	_	0.60 - 1.00	-	0.80 - 1.40	_

Formulas

1.	RPM	= m/min • 3.82 • DIA	2.	mm/min	= RPM • mm/rev	3.	m/min	= RPM • 0.003 • DIA
	where:			where:			where:	
	RPM	= revolutions per minute (rev/min)		mm/min	= mm per minute (mm/min)		m/min	= speed (m/min)
	m/min	= speed (m/min)		RPM	= revolutions per minute (rev/min)		RPM	= revolutions per minute (rev/min)
	DIA	= diameter of reamer (mm)		mm/rev	= feed rate (mm/rev)		DIA	= diameter of reamer (mm)

Stock Allowance and Coolant | Metric (mm)

Cutting Ring Style

				Recommend	ed Stock (mm) by Ream	er Diameter*
ISO	Material	Hardness (BHN)	Coolant	17.60 mm - 40.00 mm	40.01 mm - 80.00 mm	80.01 mm - 200.00 mm
Ρ	Free-Machining Steel 1118, 1215, 12L14, etc. Low-Carbon Steel 1010, 1020, 1025, 1522, 1144, etc. Medium-Carbon Steel 1030, 1040, 1050, 1527, 1140, 1151, etc. Alloy Steel 4140, 5140, 8640, etc. High-Strength Alloy 4340, 4330V, 300M, etc. Structural Steel A36, A285, A516 Tool Steel H-13, H-21, A-4, 0-2, S-3, etc.	100 - 180 180 - 250 85 - 180 180 - 275 125 - 180 180 - 325 125 - 180 180 - 375 240 - 450 125 - 180 180 - 350 150 - 200 200 - 250	Water Soluble / Cutting Oil	0.15 - 0.30	0.20 - 0.40	0.25 - 0.50
s	High-Temp Alloy Hastelloy B, Inconel 600, etc. Titanium Alloy	140 - 310 140 - 310	Water Soluble / Cutting Oil	0.20 - 0.40	0.30 - 0.40	0.30 - 0.50
м	Stainless Steel 400 Series 416, 420, etc. Stainless Steel 300 Series 304, 316, 17-4PH, etc.	135 - 350 135 - 275	Water Soluble / Cutting Oil	0.15 - 0.30	0.20 - 0.40	0.25 - 0.50
к	Grey Cast Iron, Ductile Cast Iron, Spheroidal Cast Iron (Pearlitic) Spheroidal Cast Iron (Ferritic)	< 200 > 200 260 - 320	Water Soluble / Cutting Oil	0.15 - 0.30	0.20 - 0.40	0.25 - 0.50
N	Copper and Alloys Brass Bronze Bronze Phosphorous Aluminum and Alloys	< 500 < 180 < 150	Water Soluble Water Soluble / Cutting Oil Water Soluble / Cutting Oil	0.15 - 0.30	0.20 - 0.40	0.25 - 0.50

*Stock value is on diameter.

Troubleshooting Guide

 Oversized Hole Reamer is running eccentric to the center of the machine spindle ► Use modular system with radial adjustment Excessive misalignment causing reamer to cut on back taper ► Fix the misalignment Material buildup on cutting edges ► Replace the coolant or change the cutting speed Reamer diameter is too large ► Use smaller reamer or regrind existing reamer
 Undersized Hole The reamer diameter is too small ► Use larger reamer The reamer diameter is worn ► Expand, regrind, or replace the reamer The coolant is not suitable ► Replace the coolant Stock allowance is too small ► Increase the stock allowance The cutting speed is too low ► Increase the cutting speed
Tapered Hole Excessive misalignment Correct the misalignment
Burr at Hole Entry Excessive misalignment ► Correct the misalignment
 Hole is Not Straight Concentricity and alignment error between the workpiece and the tool ▶ Correct the misalignment and use the modular system with radial adjustment Asymmetrical cutting or angled surfaces ▶ Create a chamfer on the lead-in
 Poor Hole Finish One cutting edge is chipped ▶ Regrind the reamer The lead-in is irregular ▶ Regrind the reamer Back taper on the cutting edge is too great ▶ Regrind the reamer Excessive misalignment ▶ Correct the misalignment or use the modular system Cutting data is not correct ▶ Verify the cutting data Poor chip evacuation ▶ Verify the coolant volume and pressure or use through-tool coolant
 Reamer Creates Excessive Torque Loading Back taper on the cutting edge is too small Regrind the reamer The radially ground land is too wide Regrind the reamer The coolant is not suitable Replace the coolant

Notes

SECTION

D

Roller Burnishing

Imperial		
Speeds and Feeds		175
Stock Allowance		176
Metric		
Speeds and Feeds		177
Stock Allowance		178

Roller Burnishing

				Rec	commended Feed (IPI	R) by Burnisher Diame	eter
ISO	Material	Hardness (BHN)	Speed (SFM)	0.1850" - 0.4724"	0.4725" - 0.9843"	0.9844" - 1.9685"	1.9686" - 6.5315"
	Free-Machining Steel	100 - 180	75 - 300	0.005 - 0.020	0.014 - 0.037	0.032 - 0.086	0.070 - 0.121
	1118, 1215, 12L14, etc.	180 - 250	75 - 300	0.005 - 0.020	0.014 - 0.037	0.032 - 0.086	0.070 - 0.121
	Low-Carbon Steel	85 - 180	75 - 300	0.005 - 0.020	0.014 - 0.037	0.032 - 0.086	0.070 - 0.121
	1010, 1020, 1025, 1522, 1144, etc.	180 - 275	75 - 300	0.005 - 0.020	0.014 - 0.037	0.032 - 0.086	0.070 - 0.121
	Medium-Carbon Steel	125 - 180	75 - 300	0.005 - 0.020	0.014 - 0.037	0.032 - 0.086	0.070 - 0.121
	1030, 1040, 1050, 1527, 1140, 1151, etc.	180 - 325	75 - 300	0.005 - 0.020	0.014 - 0.037	0.032 - 0.086	0.070 - 0.121
	Alloy Steel	125 - 180	75 - 300	0.005 - 0.020	0.014 - 0.037	0.032 - 0.086	0.070 - 0.121
Ρ	4140, 5140, 8640, etc.	180 - 375	75 - 300	0.005 - 0.020	0.014 - 0.037	0.032 - 0.086	0.070 - 0.121
	High-Strength Alloy	240 - 450	75 - 300	0.005 - 0.020	0.014 - 0.037	0.032 - 0.086	0.070 - 0.121
	4340, 4330V, 300M, etc.						
	Structural Steel	125 - 180	75 - 300	0.005 - 0.020	0.014 - 0.037	0.032 - 0.086	0.070 - 0.121
	A36, A285, A516, etc.	180 - 350	75 - 300	0.005 - 0.020	0.014 - 0.037	0.032 - 0.086	0.070 - 0.121
	Tool Steel	150 - 200	75 - 300	0.005 - 0.020	0.014 - 0.037	0.032 - 0.086	0.070 - 0.121
	H-13, H-21, A-4, 0-2, S-3, etc.	200 - 250	75 - 300	0.005 - 0.020	0.014 - 0.037	0.032 - 0.086	0.070 - 0.121
s	High-Temp Alloy Hastelloy B, Inconel 600, etc.	140 - 310	50 - 150	0.005 - 0.020	0.014 - 0.037	0.032 - 0.086	0.070 - 0.121
	Titanium Alloy	140 - 310	50 - 150	0.005 - 0.020	0.014 - 0.037	0.032 - 0.086	0.070 - 0.121
	Stainless Steel 400 Series 416, 420, etc.	135 - 350	75 - 200	0.005 - 0.020	0.014 - 0.037	0.032 - 0.086	0.070 - 0.121
м	Stainless Steel 300 Series 304, 316, 17-4PH, etc.	135 - 275	75 - 200	0.005 - 0.020	0.014 - 0.037	0.032 - 0.086	0.070 - 0.121
	Grey Cast Iron, Ductile Iron,	< 200	75 - 300	0.005 - 0.020	0.014 - 0.037	0.032 - 0.086	0.070 - 0.121
к	Spheroidal Cast Iron (Pearlitic)	> 200	75 - 300	0.005 - 0.020	0.014 - 0.037	0.032 - 0.086	0.070 - 0.121
	Spheroidal Cast Iron (Ferritic)	260 - 320	75 - 300	0.005 - 0.020	0.014 - 0.037	0.032 - 0.086	0.070 - 0.121
	Copper and Alloys	< 500	150 - 350	0.005 - 0.020	0.014 - 0.037	0.032 - 0.086	0.070 - 0.121
N	Brass Bronze	< 180	150 - 350	0.005 - 0.020	0.014 - 0.037	0.032 - 0.086	0.070 - 0.121
	Bronze Phosphorous	< 150	150, 250	0.005 0.020	0.014 0.027	0.032.0.086	0.070 0.121
	Aluminum and Alloys	< 150	150 - 350	0.005 - 0.020	0.014 - 0.037	0.032 - 0.086	0.070 - 0.121

Max RPM

Series	Max RPM
Н	2000
I	1500
К	1200
L	1000
F	1000
Μ	900
N	900
0	700
Р	600
Q	500
R	300
S	300
Т	250
U	200

Stock Allowance | Imperial (inch)

Roller Burnishing

			Re	ecommended Stock (inc	h) by Burnisher Diamete	er*
ISO	Material	Hardness (BHN)	0.1850" - 0.4724"	0.4725" - 0.9843"	0.9844" - 1.9685"	1.9686" - 6.5315"
	Free-Machining Steel	100 - 180	0.0004 - 0.0007	0.0007 - 0.0016	0.0010 - 0.0018	0.0012 - 0.0020
	1118, 1215, 12L14, etc.	180 - 250	0.0004 - 0.0007	0.0007 - 0.0016	0.0010 - 0.0018	0.0012 - 0.0020
	Low-Carbon Steel	85 - 180	0.0004 - 0.0007	0.0007 - 0.0016	0.0010 - 0.0018	0.0012 - 0.0020
	1010, 1020, 1025, 1522, 1144, etc.	180 - 275	0.0004 - 0.0007	0.0007 - 0.0016	0.0010 - 0.0018	0.0012 - 0.0020
	Medium-Carbon Steel	125 - 180	0.0004 - 0.0007	0.0007 - 0.0016	0.0010 - 0.0018	0.0012 - 0.0020
	1030, 1040, 1050, 1527, 1140, 1151, etc.	180 - 325	0.0004 - 0.0007	0.0005 - 0.0007	0.0005 - 0.0010	0.0008 - 0.0014
Р	Alloy Steel	125 - 180	0.0004 - 0.0007	0.0007 - 0.0016	0.0010 - 0.0018	0.0012 - 0.0020
P	4140, 5140, 8640, etc.	180 - 375	0.0004 - 0.0007	0.0005 - 0.0007	0.0005 - 0.0010	0.0008 - 0.0014
	High-Strength Alloy	240 - 450	0.0004 - 0.0007	0.0005 - 0.0007	0.0005 - 0.0010	0.0008 - 0.0014
	4340, 4330V, 300M, etc.					
	Structural Steel	125 - 180	0.0004 - 0.0007	0.0007 - 0.0016	0.0010 - 0.0018	0.0012 - 0.0020
	A36, A285, A516, etc.	180 - 350	0.0004 - 0.0007	0.0005 - 0.0007	0.0005 - 0.0010	0.0008 - 0.0014
	Tool Steel	150 - 200	0.0004 - 0.0007	0.0007 - 0.0016	0.0010 - 0.0018	0.0012 - 0.0020
	H-13, H-21, A-4, 0-2, S-3, etc.	200 - 250	0.0004 - 0.0007	0.0005 - 0.0007	0.0005 - 0.0010	0.0008 - 0.0014
s	High-Temp Alloy Hastelloy B, Inconel 600, etc.	140 - 310	0.0004 - 0.0007	0.0005 - 0.0007	0.0005 - 0.0010	0.0008 - 0.0014
	Titanium Alloy	140 - 310	0.0004 - 0.0007	0.0005 - 0.0007	0.0005 - 0.0010	0.0008 - 0.0014
	Stainless Steel 400 Series 416, 420, etc.	135 - 350	0.0004 - 0.0007	0.0007 - 0.0016	0.0010 - 0.0018	0.0012 - 0.0020
М	Stainless Steel 300 Series 304, 316, 17-4PH, etc.	135 - 275	0.0004 - 0.0007	0.0007 - 0.0016	0.0010 - 0.0018	0.0012 - 0.0020
	Grey Cast Iron, Ductile Iron,	< 200	0.0004 - 0.0007	0.0005 - 0.0007	0.0005 - 0.0010	0.0008 - 0.0014
к	Spheroidal Cast Iron (Pearlitic)	> 200	0.0004 - 0.0007	0.0005 - 0.0007	0.0005 - 0.0010	0.0008 - 0.0014
	Spheroidal Cast Iron (Ferritic)	260 - 320	0.0004 - 0.0007	0.0005 - 0.0007	0.0005 - 0.0010	0.0008 - 0.0014
	Copper and Alloys	< 500	0.0004 - 0.0007	0.0007 - 0.0016	0.0010 - 0.0018	0.0012 - 0.0020
	Brass					
Ν	Bronze Bronze Phosphorous	< 180	0.0004 - 0.0007	0.0007 - 0.0016	0.0010 - 0.0018	0.0012 - 0.0020
	Aluminum and Alloys	< 150	0.0004 - 0.0007	0.0007 - 0.0016	0.0010 - 0.0018	0.0012 - 0.0020

*Stock value is on diameter.

Roller Burnishing

				Reco	mmended Feed (mm/	/rev) by Burnisher Dia	meter
ISO	Material	Hardness (BHN)	Speed (M/min)	4.70 mm - 12.00 mm	12.01 mm - 25.00 mm	25.01 mm - 50.00 mm	50.01 mm - 165.90 mm
	Free-Machining Steel	100 - 180	22 - 90	0.13 - 0.51	0.36 - 0.94	0.81 - 2.18	1.78 - 3.07
	1118, 1215, 12L14, etc.	180 - 250	22 - 90	0.13 - 0.51	0.36 - 0.94	0.81 - 2.18	1.78 - 3.07
	Low-Carbon Steel	85 - 180	22 - 90	0.13 - 0.51	0.36 - 0.94	0.81 - 2.18	1.78 - 3.07
	1010, 1020, 1025, 1522, 1144, etc.	180 - 275	22 - 90	0.13 - 0.51	0.36 - 0.94	0.81 - 2.18	1.78 - 3.07
	Medium-Carbon Steel	125 - 180	22 - 90	0.13 - 0.51	0.36 - 0.94	0.81 - 2.18	1.78 - 3.07
	1030, 1040, 1050, 1527, 1140, 1151, etc.	180 - 325	22 - 90	0.13 - 0.51	0.36 - 0.94	0.81 - 2.18	1.78 - 3.07
Р	Alloy Steel	125 - 180	22 - 90	0.13 - 0.51	0.36 - 0.94	0.81 - 2.18	1.78 - 3.07
Ρ	4140, 5140, 8640, etc.	180 - 375	22 - 90	0.13 - 0.51	0.36 - 0.94	0.81 - 2.18	1.78 - 3.07
	High-Strength Alloy	240 - 450	22 - 90	0.13 - 0.51	0.36 - 0.94	0.81 - 2.18	1.78 - 3.07
	4340, 4330V, 300M, etc. Structural Steel	125 - 180	22 - 90	0.13 - 0.51	0.36 - 0.94	0.81 - 2.18	1.78 - 3.07
		125 - 180	22 - 90	0.13 - 0.51	0.36 - 0.94	0.81 - 2.18	1.78 - 3.07
	A36, A285, A516, etc. Tool Steel	150 - 200	22 - 90	0.13 - 0.51	0.36 - 0.94	0.81 - 2.18	1.78 - 3.07
	H-13, H-21, A-4, 0-2, S-3, etc.	200 - 250	22 - 90	0.13 - 0.51	0.36 - 0.94	0.81 - 2.18	1.78 - 3.07
s	High-Temp Alloy Hastelloy B, Inconel 600, etc.	140 - 310	15 - 45	0.13 - 0.51	0.36 - 0.94	0.81 - 2.18	1.78 - 3.07
	Titanium Alloy	140 - 310	15 - 45	0.13 - 0.51	0.36 - 0.94	0.81 - 2.18	1.78 - 3.07
	Stainless Steel 400 Series 416, 420, etc.	135 - 350	22 - 60	0.13 - 0.51	0.36 - 0.94	0.81 - 2.18	1.78 - 3.07
M	Stainless Steel 300 Series 304, 316, 17-4PH, etc.	135 - 275	22 - 60	0.13 - 0.51	0.36 - 0.94	0.81 - 2.18	1.78 - 3.07
	Grey Cast Iron, Ductile Iron,	< 200	22 - 90	0.13 - 0.51	0.36 - 0.94	0.81 - 2.18	1.78 - 3.07
К	Spheroidal Cast Iron (Pearlitic)	> 200	22 - 90	0.13 - 0.51	0.36 - 0.94	0.81 - 2.18	1.78 - 3.07
	Spheroidal Cast Iron (Ferritic)	260 - 320	22 - 90	0.13 - 0.51	0.36 - 0.94	0.81 - 2.18	1.78 - 3.07
	Copper and Alloys Brass	< 500	45 - 105	0.13 - 0.51	0.36 - 0.94	0.81 - 2.18	1.78 - 3.07
N	Bronze Bronze Phosphorous	< 180	45 - 105	0.13 - 0.51	0.36 - 0.94	0.81 - 2.18	1.78 - 3.07
	Aluminum and Alloys	< 150	45 - 105	0.13 - 0.51	0.36 - 0.94	0.81 - 2.18	1.78 - 3.07

Max RPM

Max RPM
2000
1500
1200
1000
1000
900
900
700
600
500
300
300
250
200

Stock Allowance | Metric (mm)

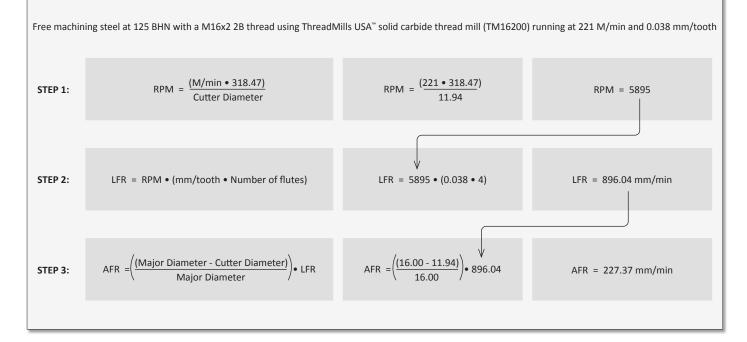
Roller Burnishing

			R	Recommended Stock (mm) by Burnisher Diameter*								
		Hardness	4.70 mm -	12.01 mm -	25.01 mm -	50.01 mm -						
ISO	Material	(BHN)	12.0 0mm	25.00 mm	50.00 mm	165.90 mm						
	Free-Machining Steel	100 - 180	0.010 - 0.018	0.018 - 0.041	0.025 - 0.046	0.030 - 0.051						
	1118, 1215, 12L14, etc.	180 - 250	0.010 - 0.018	0.018 - 0.041	0.025 - 0.046	0.030 - 0.051						
	Low-Carbon Steel	85 - 180	0.010 - 0.018	0.018 - 0.041	0.025 - 0.046	0.030 - 0.051						
	1010, 1020, 1025, 1522, 1144, etc.	180 - 275	0.010 - 0.018	0.018 - 0.041	0.025 - 0.046	0.030 - 0.051						
	Medium-Carbon Steel	125 - 180	0.010 - 0.018	0.018 - 0.041	0.025 - 0.046	0.030 - 0.051						
	1030, 1040, 1050, 1527, 1140, 1151, etc.	180 - 325	0.010 - 0.018	0.012 - 0.018	0.012 - 0.025	0.020 - 0.036						
P	Alloy Steel	125 - 180	0.010 - 0.018	0.018 - 0.041	0.025 - 0.046	0.030 - 0.051						
P	4140, 5140, 8640, etc.	180 - 375	0.010 - 0.018	0.012 - 0.018	0.012 - 0.025	0.020 - 0.036						
	High-Strength Alloy	240 - 450	0.010 - 0.018	0.012 - 0.018	0.012 - 0.025	0.020 - 0.036						
	4340, 4330V, 300M, etc.											
	Structural Steel	125 - 180	0.010 - 0.018	0.018 - 0.041	0.025 - 0.046	0.030 - 0.051						
	A36, A285, A516, etc.	180 - 350	0.010 - 0.018	0.012 - 0.018	0.012 - 0.025	0.020 - 0.036						
	Tool Steel	150 - 200	0.010 - 0.018	0.018 - 0.041	0.025 - 0.046	0.030 - 0.051						
	H-13, H-21, A-4, 0-2, S-3, etc.	200 - 250	0.010 - 0.018	0.012 - 0.018	0.012 - 0.025	0.020 - 0.036						
	High-Temp Alloy	140 - 310	0.010 - 0.018	0.012 - 0.018	0.012 - 0.025	0.020 - 0.036						
S	Hastelloy B, Inconel 600, etc.											
	Titanium Alloy	140 - 310	0.010 - 0.018	0.012 - 0.018	0.012 - 0.025	0.020 - 0.036						
	Stainless Steel 400 Series	135 - 350	0.010 - 0.018	0.018 - 0.041	0.025 - 0.046	0.030 - 0.051						
м	416, 420, etc.											
IVI	Stainless Steel 300 Series	135 - 275	0.010 - 0.018	0.018 - 0.041	0.025 - 0.046	0.030 - 0.051						
	304, 316, 17-4PH, etc.											
	Grey Cast Iron, Ductile Iron,	< 200	0.010 - 0.018	0.012 - 0.018	0.012 - 0.025	0.020 - 0.036						
К	Spheroidal Cast Iron (Pearlitic)	> 200	0.010 - 0.018	0.012 - 0.018	0.012 - 0.025	0.020 - 0.036						
	Spheroidal Cast Iron (Ferritic)	260 - 320	0.010 - 0.018	0.012 - 0.018	0.012 - 0.025	0.020 - 0.036						
	Copper and Alloys	< 500	0.010 - 0.018	0.018 - 0.041	0.025 - 0.046	0.030 - 0.051						
	Brass											
Ν	Bronze	< 180	0.010 - 0.018	0.018 - 0.041	0.025 - 0.046	0.030 - 0.051						
	Bronze Phosphorous											
	Aluminum and Alloys	< 150	0.010 - 0.018	0.018 - 0.041	0.025 - 0.046	0.030 - 0.051						

*Stock value is on diameter.

IMPORTANT: The speeds and feeds listed on these pages are a general starting point for all applications. Factory technical assistance is also available for specific applications through our Application Engineering department. ext: **7611** | email: appeng@alliedmachine.com

SECTION


Threading

Pre-Drill Information	181
Calculations and Recommended Passes	182
Solid Carbide	
AccuThread [®] 856	
Imperial	183
Metric	184
Threadmills USA™	
Imperial	185
Metric	186
AccuThread [®] T3	
Imperial	187
Metric	188
Indexable	
Positive Rake	
Imperial	189
Metric	190
Neutral Rake	
Imperial	191
Metric	192
Thread Mill Programming Guide	193 - 194
T3 Technical Information.	
Troubleshooting	197 - 198

Thread Mill Pre-Drill Information

Formula	Metric	Imperial
Velocity	M/min = RPM • 0.003 • Cutter Diameter	SFM = RPM • 0.262 • Cutter Diameter
Speed	$RPM = \frac{(M/\min \bullet 318.47)}{Cutter Diameter}$	$RPM = \frac{(SFM \bullet 3.82)}{Cutter Diameter}$
Linear Feed Rate (LFR)	mm/min = RPM • (mm/tooth • Number of Flutes)	IPM = RPM • (IPT • Number of Flutes)
Adjusted Feed Rate (AFR) See Note Below	AFR = $\left(\frac{(Major Diameter}{Major I}\right)$	- Cutter Diameter))• LFR Diameter
	an internal thread program adjusts the linear feed rate to be app djusted, the excessive feed rate will cause the thread mill cutting e	

Example of an Internal Adjusted Feed Rate Calculation:

Unit Definitions

Velocity	M/min = Meters per Minute SFM = Surface Feet per Minute
Speed	RPM = Revolutions per Minute
Feed	<pre>mm/rev = millimeters per revolution mm/tooth = millimeters per tooth also known as millimeters per flute IPR = Inch per Revolution IPT = Inch per Tooth also known as Inch per Flute mm/min = millimeters per minute IPM = Inches per minute</pre>

Thread Mill Calculations and Recommended Passes

Thread Mill Drill Calculation

Based on nominal tap drill diameter. Based on 0.003" or 0.075 mm probable mean oversize.

To calculate t	he percent of full thread for a given hole diameter:	Major Thread Diameter	r for # Drills
		Drill #	Thread Diameter
IMPERIAL:		# 2	0.086
	% of thread = # of threads per inch • Basic major diameter of thread - Drill hole size 0.0130	# 3	0.099
	0.0130	# 4	0.112
		# 5	0.125
		# 6	0.132
	76.96	# 8	0.164
METRIC:	% of thread = $\frac{76.96}{\text{Pitch (mm)}}$ • [Basic major diameter of thread - Drill hole size]	# 10	0.190
		# 12	0.216

Recommended Passes

	NPT / NPT	F / BSPT / AP	I							
Pitch	Machinability									
Size	Easy	Average	Difficult							
28	1	1	2							
27	1	1	2							
19	1	1	2							
18	1	1	2							
14	1	2	3							
11.5	1	2	3							
11	1	2	3							
10	1	2	3							
8	2	3	4							

		ISO	
		Machinability	/
Pitch Size	Easy	Average	Difficult
0.40	1	1	2
0.45	1	1	2
0.50	1	1	2
0.70	1	1	2
0.75	1	1	2
0.80	1	1	2
1.00	1	1	2
1.25	1	2	3
1.50	1	2	3
1.75	1	2	3
2.00	1	2	3
2.50	2	3	4
3.00	2	3	4
3.50	2	3	4
4.00	2	3	4
4.50	2	3	4
5.00	2	3	4
6.00	2	3	4

UN	/ UNJ / BSPP	/ BSW / NPS	/ NPSF			
		Machinability	,			
Pitch Size	Easy	Average	Difficult			
64	1	1	2			
56	1	1	2			
48	1	1	2			
44	1	1	2			
40	1	1	2			
36	1	1	2			
32	1	1	2			
28	1	1	2			
24	1	1	2			
20	1	2	3			
19	1	2	3			
18	1	2	3			
16	1	2	3			
14	1	2	3			
13	1	2	3			
12	1	2	3			
11	2	2	4			
10	2	3	4			
9	2	3	4			
8	2	3	4			
7	2	3	4			
6	2	3	4			

www.alliedmachine.com | 1.330.343.4283

Recommended Cutting Data | Imperial (inch)

Solid Carbide | AccuThread® 856

						Reco	ommended	Feed (inch	/tooth) by	Cutter Diam	neter	
ISO	Material	Hardness (BHN)	Machinability*	Speed (SFM)	0.060" to 0.125"	0.126" to 0.188"	0.189" to 0.250"	0.251" to 0.312"	0.313" to 0.375"	0.376" to 0.500"	0.501" to 0.625"	0.626" to 0.750"
	Free-Machining Steel	100 - 150	Easy	900	0.0004	0.0005	0.0007	0.0009	0.0010	0.0015	0.0020	0.0025
	1118, 1215, 12L14, etc.	150 - 200	Easy	700	0.0004	0.0005	0.0007	0.0009	0.0010	0.0015	0.0020	0.0025
		200 - 250	Easy	500	0.0004	0.0005	0.0007	0.0009	0.0010	0.0015	0.0020	0.0025
	Low-Carbon Steel	85 - 125	Average	900	0.0004	0.0005	0.0007	0.0009	0.0010	0.0015	0.0020	0.0025
	1010, 1020, 1025, 1522, 1144	125 - 175	Average	700	0.0004	0.0005	0.0007	0.0009	0.0010	0.0015	0.0020	0.0025
		175 - 225	Average	600	0.0004	0.0005	0.0007	0.0009	0.0010	0.0015	0.0020	0.0025
		225 - 275	Average	500	0.0004	0.0005	0.0007	0.0009	0.0010	0.0015	0.0020	0.0025
	Medium-Carbon Steel	125 - 175	Average	575	0.0004	0.0005	0.0006	0.0008	0.0010	0.0013	0.0018	0.0020
	1010, 1040, 1050, 1527, 1140	175 - 225	Average	500	0.0004	0.0005	0.0006	0.0008	0.0010	0.0013	0.0018	0.0020
		225 - 275	Average	450	0.0004	0.0005	0.0006	0.0008	0.0010	0.0013	0.0018	0.0020
Ρ	Allow Stool	275 - 325 125 - 175	Average	400 575	0.0004	0.0005	0.0006	0.0008	0.0010	0.0013	0.0018	0.0020
	Alloy Steel 4140, 5140, 8640	175 - 225	Average	500	0.0004	0.0005	0.0006	0.0008	0.0010	0.0013	0.0018	0.0020
	4140, 5140, 8040	225 - 275	Average Average	450	0.0004	0.0005	0.0006	0.0008	0.0010	0.0013	0.0018	0.0020
		275 - 325	Difficult	400	0.0004	0.0005	0.0006	0.0008	0.0010	0.0013	0.0018	0.0020
		325 - 375	Difficult	375	0.0004	0.0005	0.0006	0.0008	0.0010	0.0013	0.0018	0.0020
	High-Strength Alloy	225 - 300	Average	450	0.0004	0.0005	0.0006	0.0008	0.0010	0.0013	0.0018	0.0020
	4340, 4330V, 300M	300 - 350	Difficult	400	0.0004	0.0005	0.0006	0.0008	0.0010	0.0013	0.0018	0.0020
		350 - 400	Difficult	350	0.0004	0.0005	0.0006	0.0008	0.0010	0.0013	0.0018	0.0020
	Structural Steel	100 - 150	Average	600	0.0004	0.0005	0.0007	0.0009	0.0010	0.0015	0.0020	0.0025
	A36, A285, A516	150 - 250	Average	500	0.0004	0.0005	0.0007	0.0009	0.0010	0.0015	0.0020	0.0025
		250 - 350	Difficult	450	0.0004	0.0005	0.0007	0.0009	0.0010	0.0015	0.0020	0.0025
	Ulah Tanan Allan	140 220	Difficult	120	0.0000	0.0004	0.0000	0.0000	0.0000	0.0010	0.0012	0.0015
S	High-Temp Alloy	140 - 220	Difficult	120 90	0.0003	0.0004	0.0006	0.0008	0.0009	0.0010	0.0012	0.0015
	Hastelloy B, Inconel 600	220 - 310	Difficult	90	0.0003	0.0004	0.0006	0.0008	0.0009	0.0010	0.0012	0.0015
	Stainless Steel	135 - 185	Difficult	525	0.0004	0.0005	0.0006	0.0008	0.0009	0.0010	0.0015	0.0020
	303, 416, 420	185 - 275	Difficult	500	0.0004	0.0005	0.0006	0.0008	0.0009	0.0010	0.0015	0.0020
м	Stainless Steel PH	185 - 275	Difficult	300	0.0004	0.0005	0.0006	0.0008	0.0009	0.0010	0.0015	0.0020
	17-4	275 - 325	Difficult	150	0.0004	0.0005	0.0006	0.0008	0.0009	0.0010	0.0015	0.0020
	Tool Steel	150 - 200	Difficult	575	0.0004	0.0005	0.0007	0.0009	0.0010	0.0015	0.0020	0.0025
	H-13, H21, A-4	200 - 250	Difficult	500	0.0004	0.0005	0.0007	0.0009	0.0010	0.0015	0.0020	0.0025
	Cast Iron	120 - 150	Easy	675	0.0004	0.0005	0.0007	0.0009	0.0010	0.0015	0.0020	0.0025
	Grey, Ductile, Nodular	150 - 200	Easy	625	0.0004	0.0005	0.0007	0.0009	0.0010	0.0015	0.0020	0.0025
К		200 - 220	Easy	575	0.0004	0.0005	0.0007	0.0009	0.0010	0.0015	0.0020	0.0025
		220 - 260	Average	500	0.0004	0.0005	0.0007	0.0009	0.0010	0.0015	0.0020	0.0025
		260 - 320	Average	475	0.0004	0.0005	0.0007	0.0009	0.0010	0.0015	0.0020	0.0025
	Wrought Aluminum	30	Easy	1100	0.0005	0.0006	0.0009	0.0010	0.0015	0.0020	0.0025	0.0030
	6061 T6	180	Easy	1000	0.0005	0.0006	0.0009	0.0010	0.0015	0.0020	0.0025	0.0030
Ν	Cast Aluminum** up to 10% silicon	120	Easy	625	0.0005	0.0006	0.0009	0.0010	0.0015	0.0020	0.0025	0.0030
	Brass	30 - 125	Easy	1100	0.0005	0.0006	0.0009	0.0010	0.0015	0.0020	0.0025	0.0030
		1 00 120			0.0000	0.0000	0.0005	0.0010	0.0015	0.0020	0.0020	0.0000

NOTICE: Reduce feed and speed by 30% for tapered thread forms due to additional material removal

*Refer to recommended pass chart on page 168 when referencing material machinability

Recommended Cutting Data | Metric (mm)

Solid Carbide | AccuThread[®] 856

Recommended Feed (mm/tooth) by Cutter Diameter									/tooth) by (Cutter Diam	eter	
ISO	Material	Hardness (BHN)	Machinability*	Speed (M/min)	1.50 mm - 3.18 mm	3.19 mm - 4.76 mm	4.77 mm - 6.35 mm	6.36 mm - 7.94 mm	7.95 mm - 9.53 mm	-	12.71 mm - 15.88 mm	-
	Free-Machining Steel	100 - 150	Easy	274	0.010	0.013	0.018	0.023	0.025	0.038	0.051	0.064
	1118, 1215, 12L14, etc.	150 - 200	Easy	213	0.010	0.013	0.018	0.023	0.025	0.038	0.051	0.064
		200 - 250	Easy	152	0.010	0.013	0.018	0.023	0.025	0.038	0.051	0.064
	Low-Carbon Steel	85 - 125	Average	274	0.010	0.013	0.018	0.023	0.025	0.038	0.051	0.064
	1010, 1020, 1025, 1522, 1144	125 - 175	Average	213	0.010	0.013	0.018	0.023	0.025	0.038	0.051	0.064
		175 - 225	Average	183	0.010	0.013	0.018	0.023	0.025	0.038	0.051	0.064
		225 - 275	Average	152	0.010	0.013	0.018	0.023	0.025	0.038	0.051	0.064
	Medium-Carbon Steel	125 - 175	Average	175	0.010	0.013	0.015	0.020	0.025	0.033	0.046	0.051
	1010, 1040, 1050, 1527, 1140	175 - 225	Average	152	0.010	0.013	0.015	0.020	0.025	0.033	0.046	0.051
		225 - 275	Average	137	0.010	0.013	0.015	0.020	0.025	0.033	0.046	0.051
Р		275 - 325	Average	122	0.010	0.013	0.015	0.020	0.025	0.033	0.046	0.051
	Alloy Steel	125 - 175	Average	175	0.010	0.013	0.015	0.020	0.025	0.033	0.046	0.051
	4140, 5140, 8640	175 - 225	Average	152	0.010	0.013	0.015	0.020	0.025	0.033	0.046	0.051
		225 - 275	Average	137	0.010	0.013	0.015	0.020	0.025	0.033	0.046	0.051
		275 - 325	Difficult	122	0.010	0.013	0.015	0.020	0.025	0.033	0.046	0.051
		325 - 375	Difficult	114	0.010	0.013	0.015	0.020	0.025	0.033	0.046	0.051
	High-Strength Alloy	225 - 300	Average	137	0.010	0.013	0.015	0.020	0.025	0.033	0.046	0.051
	4340, 4330V, 300M	300 - 350	Difficult	122	0.010	0.013	0.015	0.020	0.025	0.033	0.046	0.051
		350 - 400	Difficult	107	0.010	0.013	0.015	0.020	0.025	0.033	0.046	0.051
	Structural Steel	100 - 150	Average	183	0.010	0.013	0.018	0.023	0.025	0.038	0.051	0.064
	A36, A285, A516	150 - 250	Average	152	0.010	0.013	0.018	0.023	0.025	0.038	0.051	0.064
		250 - 350	Difficult	137	0.010	0.013	0.018	0.023	0.025	0.038	0.051	0.064
	High-Temp Alloy	140 - 220	Difficult	37	0.008	0.010	0.015	0.020	0.023	0.025	0.030	0.038
S	Hastelloy B, Inconel 600	220 - 310	Difficult	27	0.008	0.010	0.015	0.020	0.023	0.025	0.030	0.038
					1	1	1	1		1		
	Stainless Steel	135 - 185	Difficult	160	0.010	0.013	0.015	0.020	0.023	0.025	0.038	0.051
	303, 416, 420	185 - 275	Difficult	152	0.010	0.013	0.015	0.020	0.023	0.025	0.038	0.051
М	Stainless Steel PH	185 - 275	Difficult	91	0.010	0.013	0.015	0.020	0.023	0.025	0.038	0.051
	17-4 Tool Shoul	275 - 325	Difficult	46	0.010	0.013	0.015	0.020	0.023	0.025	0.038	0.051
	Tool Steel	150 - 200	Difficult	175	0.010	0.013	0.018	0.023	0.025	0.038	0.051	0.064
	H-13, H21, A-4	200 - 250	Difficult	152	0.010	0.013	0.018	0.023	0.025	0.038	0.051	0.064
	Cast Iron	120 - 150	Easy	206	0.010	0.013	0.018	0.023	0.025	0.038	0.051	0.064
	Grey, Ductile, Nodular	150 - 200	Easy	191	0.010	0.013	0.018	0.023	0.025	0.038	0.051	0.064
К		200 - 220	Easy	175	0.010	0.013	0.018	0.023	0.025	0.038	0.051	0.064
		220 - 260	Average	152	0.010	0.013	0.018	0.023	0.025	0.038	0.051	0.064
		260 - 320	Average	145	0.010	0.013	0.018	0.023	0.025	0.038	0.051	0.064
	Wrought Aluminum	30	Easy	335	0.013	0.015	0.023	0.025	0.038	0.051	0.064	0.076
	6061 T6	180	Easy	305	0.013	0.015	0.023	0.025	0.038	0.051	0.064	0.076
Ν	Cast Aluminum** up to 10% silicon	120	Easy	191	0.013	0.015	0.023	0.025	0.038	0.051	0.064	0.076
	Brass	30 - 125	Easy	335	0.013	0.015	0.023	0.025	0.038	0.051	0.064	0.076
	51055	50 125	Lusy		0.013	0.013	0.023	0.025	0.030	0.031	0.004	0.070

NOTICE: Reduce feed and speed by 30% for tapered thread forms due to additional material removal

*Refer to recommended pass chart on page 168 when referencing material machinability

Recommended Cutting Data | Imperial (inch)

Solid Carbide | ThreadMills USA™

						Reco	ommended	Feed (inch	/tooth) by (Cutter Diam	neter	
ISO	Material	Hardness (BHN)	Machinability*	Speed (SFM)	0.060" - 0.125"	0.126" - 0.188"	0.189" - 0.250"	0.251"	0.313" 0.375"	0.376" - 0.500"	0.501" - 0.625"	0.626" - 0.750"
	Free-Machining Steel	100 - 150	Easy	725	0.0004	0.0005	0.0007	0.0009	0.0010	0.0015	0.0020	0.0025
	1118, 1215, 12L14, etc.	150 - 200	Easy	550	0.0004	0.0005	0.0007	0.0009	0.0010	0.0015	0.0020	0.0025
		200 - 250	Easy	450	0.0004	0.0005	0.0007	0.0009	0.0010	0.0015	0.0020	0.0025
	Low-Carbon Steel	85 - 125	Average	725	0.0004	0.0005	0.0007	0.0009	0.0010	0.0015	0.0020	0.0025
	1010, 1020, 1025, 1522, 1144	125 - 175	Average	550	0.0004	0.0005	0.0007	0.0009	0.0010	0.0015	0.0020	0.0025
		175 - 225	Average	450	0.0004	0.0005	0.0007	0.0009	0.0010	0.0015	0.0020	0.0025
		225 - 275	Average	400	0.0004	0.0005	0.0007	0.0009	0.0010	0.0015	0.0020	0.0025
	Medium-Carbon Steel	125 - 175	Average	450	0.0004	0.0005	0.0006	0.0008	0.0010	0.0013	0.0018	0.0020
	1010, 1040, 1050, 1527, 1140	175 - 225	Average	400	0.0004	0.0005	0.0006	0.0008	0.0010	0.0013	0.0018	0.0020
		225 - 275	Average	350	0.0004	0.0005	0.0006	0.0008	0.0010	0.0013	0.0018	0.0020
Р		275 - 325	Average	300	0.0004	0.0005	0.0006	0.0008	0.0010	0.0013	0.0018	0.0020
	Alloy Steel	125 - 175	Average	450	0.0004	0.0005	0.0006	0.0008	0.0010	0.0013	0.0018	0.0020
	4140, 5140, 8640	175 - 225	Average	400	0.0004	0.0005	0.0006	0.0008	0.0010	0.0013	0.0018	0.0020
		225 - 275	Average	350	0.0004	0.0005	0.0006	0.0008	0.0010	0.0013	0.0018	0.0020
		275 - 325	Difficult	300	0.0004	0.0005	0.0006	0.0008	0.0010	0.0013	0.0018	0.0020
		325 - 375	Difficult	250	0.0004	0.0005	0.0006	0.0008	0.0010	0.0013	0.0018	0.0020
	High-Strength Alloy	225 - 300	Average	350	0.0004	0.0005	0.0006	0.0008	0.0010	0.0013	0.0018	0.0020
	4340, 4330V, 300M	300 - 350	Difficult	300	0.0004	0.0005	0.0006	0.0008	0.0010	0.0013	0.0018	0.0020
		350 - 400	Difficult	250	0.0004	0.0005	0.0006	0.0008	0.0010	0.0013	0.0018	0.0020
	Structural Steel	100 - 150	Average	450	0.0004	0.0005	0.0007	0.0009	0.0010	0.0015	0.0020	0.0025
	A36, A285, A516	150 - 250	Average	400	0.0004	0.0005	0.0007	0.0009	0.0010	0.0015	0.0020	0.0025
		250 - 350	Difficult	300	0.0004	0.0005	0.0007	0.0009	0.0010	0.0015	0.0020	0.0025
	High-Temp Alloy	140 - 220	Difficult	100	0.0003	0.0004	0.0006	0.0008	0.0009	0.0010	0.0012	0.0015
S	Hastelloy B, Inconel 600	220 - 310	Difficult	75	0.0003	0.0004	0.0006	0.0008	0.0009	0.0010	0.0012	0.0015
	Stainless Steel	135 - 185	Difficult	425	0.0004	0.0005	0.0006	0.0008	0.0009	0.0010	0.0015	0.0020
	303, 416, 420	185 - 275	Difficult	400	0.0004	0.0005	0.0006	0.0008	0.0009	0.0010	0.0015	0.0020
	Stainless Steel PH	185 - 275	Difficult	250	0.0004	0.0005	0.0006	0.0008	0.0009	0.0010	0.0015	0.0020
Μ	17-4	275 - 325	Difficult	125	0.0004	0.0005	0.0006	0.0008	0.0009	0.0010	0.0015	0.0020
	Tool Steel	150 - 200	Difficult	325	0.0004	0.0005	0.0007	0.0008	0.0010	0.0015	0.0020	0.0025
	H-13, H21, A-4	200 - 250	Difficult	225	0.0004	0.0005	0.0007	0.0008	0.0010	0.0015	0.0020	0.0025
	Cast Iron	120 - 150	Easy	550	0.0004	0.0005	0.0007	0.0009	0.0010	0.0015	0.0020	0.0025
	Grey, Ductile, Nodular	150 - 200	Easy	500	0.0004	0.0005	0.0007	0.0009	0.0010	0.0015	0.0020	0.0025
К	<i>p i</i>	200 - 220	Easy	450	0.0004	0.0005	0.0007	0.0009	0.0010	0.0015	0.0020	0.0025
		220 - 260	Average	400	0.0004	0.0005	0.0007	0.0009	0.0010	0.0015	0.0020	0.0025
		260 - 320	Average	375	0.0004	0.0005	0.0007	0.0009	0.0010	0.0015	0.0020	0.0025
	Wrought Aluminum	30	Easy	1000	0.0005	0.0006	0.0009	0.0010	0.0015	0.0020	0.0025	0.0030
	6061 T6	180	Easy	900	0.0005	0.0006	0.0009	0.0010	0.0015	0.0020	0.0025	0.0030
Ν	Cast Aluminum** up to 10% silicon	120	Easy	500	0.0005	0.0006	0.0009	0.0010	0.0015	0.0020	0.0025	0.0030
	Brass	30 - 125	Easy	1000	0.0005	0.0006	0.0009	0.0010	0.0015	0.0020	0.0025	0.0030
			,									

NOTICE: Reduce feed and speed by 30% for tapered thread forms due to additional material removal

*Refer to recommended pass chart on page 168 when referencing material machinability

Recommended Cutting Data | Metric (mm)

Solid Carbide | ThreadMills USA[™]

						Rec	ommended	Feed (mm	/tooth) by (Cutter Diam	neter	
ISO	Material	Hardness (BHN)	Machinability*	Speed (M/min)	1.50 mm - 3.18 mm	3.19 mm - 4.76 mm	4.77 mm - 6.35 mm	6.36 mm - 7.94 mm	7.95 mm - 9.53 mm	-	12.71 mm - 15.88 mm	-
	Free-Machining Steel	100 - 150	Easy	221	0.010	0.013	0.018	0.023	0.025	0.038	0.051	0.064
	1118, 1215, 12L14, etc.	150 - 200	Easy	168	0.010	0.013	0.018	0.023	0.025	0.038	0.051	0.064
		200 - 250	Easy	137	0.010	0.013	0.018	0.023	0.025	0.038	0.051	0.064
	Low-Carbon Steel	85 - 125	Average	221	0.010	0.013	0.018	0.023	0.025	0.038	0.051	0.064
	1010, 1020, 1025, 1522, 1144	125 - 175	Average	168	0.010	0.013	0.018	0.023	0.025	0.038	0.051	0.064
		175 - 225	Average	137	0.010	0.013	0.018	0.023	0.025	0.038	0.051	0.064
		225 - 275	Average	122	0.010	0.013	0.018	0.023	0.025	0.038	0.051	0.064
	Medium-Carbon Steel	125 - 175	Average	137	0.010	0.013	0.015	0.020	0.025	0.038	0.046	0.051
	1010, 1040, 1050, 1527, 1140	175 - 225	Average	122	0.010	0.013	0.015	0.020	0.025	0.038	0.046	0.051
		225 - 275	Average	107	0.010	0.013	0.015	0.020	0.025	0.038	0.046	0.051
Р		275 - 325	Average	91	0.010	0.013	0.015	0.020	0.025	0.038	0.046	0.051
	Alloy Steel	125 - 175	Average	137	0.010	0.013	0.015	0.020	0.025	0.038	0.046	0.051
	4140, 5140, 8640	175 - 225	Average	122	0.010	0.013	0.015	0.020	0.025	0.038	0.046	0.051
		225 - 275	Average	107	0.010	0.013	0.015	0.020	0.025	0.038	0.046	0.051
		275 - 325	Difficult	91	0.010	0.013	0.015	0.020	0.025	0.038	0.046	0.051
	High-Strength Alloy	325 - 375 225 - 300	Difficult Average	76 107	0.010	0.013	0.015	0.020	0.025	0.038	0.046	0.051
	4340, 4330V, 300M	300 - 350	Difficult	91	0.010	0.013	0.015	0.020	0.025	0.038	0.046	0.051
	4340, 43300, 30000	350 - 400	Difficult	76	0.010	0.013	0.015	0.020	0.025	0.038	0.046	0.051
	Structural Steel	100 - 150	Average	137	0.010	0.013	0.013	0.023	0.025	0.038	0.051	0.064
	A36, A285, A516	150 - 250	Average	122	0.010	0.013	0.018	0.023	0.025	0.038	0.051	0.064
	,,	250 - 350	Difficult	91	0.010	0.013	0.018	0.023	0.025	0.038	0.051	0.064
			1									
S	High-Temp Alloy	140 - 220	Difficult	30	0.008	0.010	0.015	0.020	0.023	0.025	0.030	0.038
	Hastelloy B, Inconel 600	220 - 310	Difficult	23	0.008	0.010	0.015	0.020	0.023	0.025	0.030	0.038
	Stainless Steel	135 - 185	Difficult	130	0.010	0.013	0.015	0.020	0.023	0.025	0.038	0.051
	303, 416, 420	185 - 275	Difficult	122	0.010	0.013	0.015	0.020	0.023	0.025	0.038	0.051
м	Stainless Steel PH	185 - 275	Difficult	76	0.010	0.013	0.015	0.020	0.023	0.025	0.038	0.051
	17-4	275 - 325	Difficult	38	0.010	0.013	0.015	0.020	0.023	0.025	0.038	0.051
	Tool Steel	150 - 200	Difficult	99	0.010	0.013	0.018	0.023	0.025	0.038	0.051	0.064
	H-13, H21, A-4	200 - 250	Difficult	69	0.010	0.013	0.018	0.023	0.025	0.038	0.051	0.064
	Cast Iron	120 - 150	Easy	168	0.010	0.013	0.018	0.023	0.025	0.038	0.051	0.064
	Grey, Ductile, Nodular	150 - 200	Easy	152	0.010	0.013	0.018	0.023	0.025	0.038	0.051	0.064
R		200 - 220	Easy	137	0.010	0.013	0.018	0.023	0.025	0.038	0.051	0.064
		220 - 260	Average	122	0.010	0.013	0.018	0.023	0.025	0.038	0.051	0.064
		260 - 320	Average	114	0.010	0.013	0.018	0.023	0.025	0.038	0.051	0.064
	Wrought Aluminum	30	Easy	305	0.013	0.015	0.023	0.025	0.038	0.051	0.064	0.076
	6061 T6	180	Easy	274	0.013	0.015	0.023	0.025	0.038	0.051	0.064	0.076
S	Cast Aluminum** up to 10% silicon	120	Easy	152	0.013	0.015	0.023	0.025	0.038	0.051	0.064	0.076
	Brass	30 - 125	Easy	305	0.013	0.015	0.023	0.025	0.038	0.051	0.064	0.076
			,		0.010	0.010						

NOTICE: Reduce feed and speed by 30% for tapered thread forms due to additional material removal

*Refer to recommended pass chart on page 168 when referencing material machinability

Recommended Cutting Data | Imperial (inch)

Solid Carbide | AccuThread® T3

					C	hipload per To	ooth (IPT) by C	Cutter Diamet	er	
				0.055"	0.126"	0.189"	0.251"	0.313"	0.376"	0.501"
		Hardness	Speed	-	-	-	-	-	-	-
ISO	Material	(BHN)	(SFM)	0.125"	0.188"	0.250"	0.312"	0.375"	0.500"	0.750"
	Free-Machining Steel	100 - 150	375	0.0008	0.0010	0.0014	0.0018	0.0020	0.0030	0.0035
	1118, 1215, 12L14, etc.	150 - 200	275	0.0008	0.0010	0.0014	0.0018	0.0020	0.0030	0.0035
		200 - 250	225	0.0008	0.0010	0.0014	0.0018	0.0020	0.0030	0.0035
	Low-Carbon Steel	85 - 125	375	0.0008	0.0010	0.0014	0.0018	0.0020	0.0030	0.0035
	1010, 1020, 1025, 1522, 1144, etc.	125 - 175	275	0.0008	0.0010	0.0014	0.0018	0.0020	0.0030	0.0035
		175 - 225	225	0.0008	0.0010	0.0014	0.0018	0.0020	0.0030	0.0035
		225 - 275	200	0.0008	0.0010	0.0014	0.0018	0.0020	0.0030	0.0035
	Medium-Carbon Steel	125 - 175	225	0.0008	0.0010	0.0012	0.0016	0.0020	0.0026	0.0031
	1030, 1040, 1050, 1527, 1140,	175 - 225	200	0.0008	0.0010	0.0012	0.0016	0.0020	0.0026	0.0031
	1151, etc.	225 - 275	175	0.0008	0.0010	0.0012	0.0016	0.0020	0.0026	0.0031
		275 - 325	150	0.0008	0.0010	0.0012	0.0016	0.0020	0.0026	0.0031
	Alloy Steel	125 - 175	225	0.0008	0.0010	0.0012	0.0016	0.0020	0.0026	0.0031
Р	4140, 5140, 8640, etc.	175 - 225	200	0.0008	0.0010	0.0012	0.0016	0.0020	0.0026	0.0031
		225 - 275	175	0.0008	0.0010	0.0012	0.0016	0.0020	0.0026	0.0031
		275 - 325	150	0.0008	0.0010	0.0012	0.0016	0.0020	0.0026	0.0031
		325 - 375	125	0.0008	0.0010	0.0012	0.0016	0.0020	0.0026	0.0031
	High-Strength Alloy	225 - 300	175	0.0008	0.0010	0.0012	0.0016	0.0020	0.0026	0.0031
	4340, 4330V, 300M, etc.	300 - 350	150	0.0008	0.0010	0.0012	0.0016	0.0020	0.0026	0.0031
		350 - 400	125	0.0008	0.0010	0.0012	0.0016	0.0020	0.0026	0.0031
	Structural Steel	100 - 150	225	0.0008	0.0010	0.0012	0.0018	0.0020	0.0020	0.0035
	A36, A285, A516, etc.	150 - 250	200	0.0008	0.0010	0.0014	0.0018	0.0020	0.0030	0.0035
	A30, A203, A310, etc.	250 - 350	150	0.0008	0.0010	0.0014	0.0018	0.0020	0.0030	0.0035
	Tool Steel	150 - 200	175	0.0008	0.0010	0.0014	0.0016	0.0020	0.0030	0.0033
	H-13, H-21, A-4, 0-2, S-3, etc.	200 - 250	175	0.0008	0.0010	0.0012	0.0016	0.0020	0.0020	0.0031
	11 13, 11 21, A 4, 0 2, 3 3, ctc.	200 250	125	0.0000	0.0010	0.0012	0.0010	0.0020	0.0020	0.0051
	High-Temp Alloy	140 - 220	100	0.0006	0.0008	0.0012	0.0016	0.0018	0.0020	0.0025
	Hastelloy B, Inconel 600, etc.	220 - 310	75	0.0006	0.0008	0.0012	0.0016	0.0018	0.0020	0.0025
S	Titanium Alloy	140 - 220	100	0.0006	0.0008	0.0012	0.0016	0.0018	0.0020	0.0025
Ŭ		220 - 310	75	0.0006	0.0008	0.0012	0.0016	0.0018	0.0020	0.0025
	Aerospace Alloy	185 - 275	100	0.0006	0.0008	0.0012	0.0016	0.0018	0.0020	0.0025
	S82	275 - 350	75	0.0006	0.0008	0.0012	0.0016	0.0018	0.0020	0.0025
_	Stainless Steel	185 - 275	225	0.0008	0.0010	0.0012	0.0016	0.0018	0.0020	0.0025
	416, 420, etc.	275 - 350	200	0.0008	0.0010	0.0012	0.0016	0.0018	0.0020	0.0025
	Stainless Steel 300 Series	135 - 185	125	0.0008	0.0010	0.0012	0.0016	0.0018	0.0020	0.0025
Μ	304, 316, 17-4PH, etc.	185 - 275	75	0.0008	0.0010	0.0012	0.0016	0.0018	0.0020	0.0025
	Super Duplex Stainless Steel	135 - 185	125	0.0006	0.0010	0.0012	0.0016	0.0018	0.0020	0.0025
	Super Duplex Stalliess Steel	185 - 275	75	0.0006	0.0008	0.0012	0.0016	0.0018	0.0020	0.0025
		185-275	73	0.0000	0.0008	0.0012	0.0010	0.0018	0.0020	0.0023
н	Hardened Steels	450 - 500	175	0.0006	0.0008	0.0012	0.0016	0.0018	0.0020	0.0025
		500 - 550	125	0.0006	0.0008	0.0012	0.0016	0.0018	0.0020	0.0025
	Cast Iron	120 - 150	275	0.0008	0.0010	0.0014	0.0018	0.0020	0.0030	0.0035
	Grey, Ductile, Nodular	150 - 200	250	0.0008	0.0010	0.0014	0.0018	0.0020	0.0030	0.0035
к	Grey, Ductic, Noutian	200 - 220	230	0.0008	0.0010	0.0014	0.0018	0.0020	0.0030	0.0035
Ň		200 - 220	225	0.0008	0.0010	0.0014	0.0018	0.0020	0.0030	0.0035
		260 - 320	200	0.0008	0.0010	0.0014	0.0018	0.0020	0.0030	0.0035
		1	200	0.0000	0.0010	0.0014	0.0010	0.0020	0.0000	0.0033
	Wrought Aluminum	30	500	0.0010	0.0012	0.0018	0.0020	0.0030	0.0040	0.0048
N		180	450	0.0010	0.0012	0.0018	0.0020	0.0030	0.0040	0.0048
		1 20 400	1 250	0.0010	0.0013	0.0019	0.0020	0.0020	0.0040	0.0048
IN	Cast Aluminum	30 - 180	250	0.0010	0.0012	0.0018	0.0020	0.0030	0.0040	0.00+0

NOTICE: Reduce feed and speed by 30% for tapered thread forms due to additional material removal

*Refer to recommended pass chart on page 168 when referencing material machinability

Recommended Cutting Data | Metric (mm)

Solid Carbide | AccuThread[®] T3

					Chiple	oad per Tooth	(mm/tooth)	by Cutter Dia	meter	
				1.40 mm	3.18 mm	4.78 mm	6.36 mm	7.93 mm	9.53 mm	12.71 mm
ISO	Material	Hardness (BHN)	Speed (M/min)	- 3.17 mm	- 4.77 mm	- 6.35 mm	- 7.92 mm	- 9.52 mm	- 12.70 mm	- 19.05 mm
	Free-Machining Steel	100 - 150	115	0.020	0.025	0.035	0.045	0.050	0.075	0.090
	1118, 1215, 12L14, etc.	150 - 200	85	0.020	0.025	0.035	0.045	0.050	0.075	0.090
		200 - 250	70	0.020	0.025	0.035	0.045	0.050	0.075	0.090
	Low-Carbon Steel	85 - 125	115	0.020	0.025	0.035	0.045	0.050	0.075	0.090
	1010, 1020, 1025, 1522, 1144, etc.	125 - 175	85	0.020	0.025	0.035	0.045	0.050	0.075	0.090
		175 - 225	70	0.020	0.025	0.035	0.045	0.050	0.075	0.090
		225 - 275	60	0.020	0.025	0.035	0.045	0.050	0.075	0.090
	Medium-Carbon Steel	125 - 175	70	0.020	0.025	0.030	0.040	0.050	0.065	0.080
	1030, 1040, 1050, 1527, 1140,	175 - 225	60	0.020	0.025	0.030	0.040	0.050	0.065	0.080
	1151, etc.	225 - 275	50	0.020	0.025	0.030	0.040	0.050	0.065	0.080
		275 - 325	45	0.020	0.025	0.030	0.040	0.050	0.065	0.080
	Alloy Steel	125 - 175	70	0.020	0.025	0.030	0.040	0.050	0.065	0.080
Ρ	4140, 5140, 8640, etc.	175 - 225	60	0.020	0.025	0.030	0.040	0.050	0.065	0.080
	-,,,	225 - 275	50	0.020	0.025	0.030	0.040	0.050	0.065	0.080
		275 - 325	45	0.020	0.025	0.030	0.040	0.050	0.065	0.080
		325 - 375	38	0.020	0.025	0.030	0.040	0.050	0.065	0.080
	High-Strength Alloy	225 - 300	50	0.020	0.025	0.030	0.040	0.050	0.065	0.080
	4340, 4330V, 300M, etc.	300 - 350	45	0.020	0.025	0.030	0.040	0.050	0.065	0.080
	4340, 43300, 30000, etc.	350 - 350	38	0.020	0.025	0.030	0.040	0.050	0.065	0.080
	Structural Steel	100 - 150	70	0.020	0.025	0.035	0.040	0.050	0.005	0.090
	A36, A285, A516, etc.	150 - 250	60	0.020	0.025	0.035	0.045	0.050	0.075	0.090
	A30, A283, A310, etc.	250 - 350	45	0.020	0.025	0.035	0.045	0.050	0.075	0.090
	Tool Steel	150 - 200		0.020			0.043		0.075	0.090
	H-13, H-21, A-4, 0-2, S-3, etc.	200 - 250	50 38	0.020	0.025	0.030	0.040	0.050	0.065	0.080
		1	1		1	1	1	1		
	High-Temp Alloy	140 - 220	30	0.015	0.020	0.030	0.040	0.045	0.050	0.065
	Hastelloy B, Inconel 600, etc.	220 - 310	23	0.015	0.020	0.030	0.040	0.045	0.050	0.065
S	Titanium Alloy	140 - 220	30	0.015	0.020	0.030	0.040	0.045	0.050	0.065
		220 - 310	23	0.015	0.020	0.030	0.040	0.045	0.050	0.065
	Aerospace Alloy	185 - 275	30	0.015	0.020	0.030	0.040	0.045	0.050	0.065
	S82	275 - 350	23	0.015	0.020	0.030	0.040	0.045	0.050	0.065
	Stainless Steel	185 - 275	70	0.020	0.025	0.030	0.040	0.045	0.050	0.065
	416, 420, etc.	275 - 350	60	0.020	0.025	0.030	0.040	0.045	0.050	0.065
М	Stainless Steel 300 Series	135 - 185	38	0.020	0.025	0.030	0.040	0.045	0.050	0.065
	304, 316, 17-4PH, etc.	185 - 275	23	0.020	0.025	0.030	0.040	0.045	0.050	0.065
	Super Duplex Stainless Steel	135 - 185	38	0.015	0.020	0.030	0.040	0.045	0.050	0.065
		185 - 275	23	0.015	0.020	0.030	0.040	0.045	0.050	0.065
	Hardened Steels	450 - 500	50	0.015	0.020	0.030	0.040	0.045	0.050	0.065
н		500 - 550	38	0.015	0.020	0.030	0.040	0.045	0.050	0.065
	Cast Iron	120 - 150	85	0.020	0.025	0.035	0.045	0.050	0.075	0.090
	Grey, Ductile, Nodular	150 - 200	75	0.020	0.025	0.035	0.045	0.050	0.075	0.090
К		200 - 220	70	0.020	0.025	0.035	0.045	0.050	0.075	0.090
		220 - 260	60	0.020	0.025	0.035	0.045	0.050	0.075	0.090
		260 - 320	60	0.020	0.025	0.035	0.045	0.050	0.075	0.090
	Wrought Aluminum	30	150	0.025	0.030	0.045	0.050	0.075	0.100	0.120
		180	135	0.025	0.030	0.045	0.050	0.075	0.100	0.120
Ν	Cast Aluminum	30 - 180	75				ł			
	Cast Aluminum	l		0.025	0.030	0.045	0.050	0.075	0.100	0.120
	Brass	30 - 100	150	0.025	0.030	0.045	0.050	0.075	0.100	0.120

NOTICE: Reduce feed and speed by 30% for tapered thread forms due to additional material removal

*Refer to recommended pass chart on page 168 when referencing material machinability

Recommended Cutting Data | Imperial (inch)

Indexable | AccuThread[®] 856 | Positive Rake

Recommended Feed (inch/tooth) by Cutter D										Diameter	
			Machinability**		1 fl	ute	1 and 2 flutes	3 flutes	5 flutes	7 flutes	8 flutes
ISO	Material	Hardness (BHN)	oility**	Speed (SFM)	0.375" - 0.500"	0.501" - 0.750"	0.751" - 1.000"	1.001" - 1.500"	1.501" - 2.000"	2.001" - 2.750"	2.751" - 3.500"
	Free-Machining Steel	100 - 150	Easy	900	0.0008	0.0010	0.0012	0.0015	0.0020	0.0025	0.0030
	1118, 1215, 12L14, etc.	150 - 200	Easy	700	0.0008	0.0010	0.0012	0.0015	0.0020	0.0025	0.0030
		200 - 250	Easy	500	0.0008	0.0010	0.0012	0.0015	0.0020	0.0025	0.0030
	Low-Carbon Steel	85 - 125	Average	900	0.0008	0.0010	0.0012	0.0015	0.0020	0.0025	0.0030
	1010, 1020, 1025, 1522, 1144	125 - 175	Average	700	0.0008	0.0010	0.0012	0.0015	0.0020	0.0025	0.0030
		175 - 225	Average	600	0.0008	0.0010	0.0012	0.0015	0.0020	0.0025	0.0030
		225 - 275	Average	500	0.0008	0.0010	0.0012	0.0015	0.0020	0.0025	0.0030
	Medium-Carbon Steel	125 - 175	Average	575	0.0008	0.0009	0.0010	0.0012	0.0015	0.0020	0.0025
	1010, 1040, 1050, 1527, 1140	175 - 225	Average	500	0.0008	0.0009	0.0010	0.0012	0.0015	0.0020	0.0025
		225 - 275	Average	450	0.0008	0.0009	0.0010	0.0012	0.0015	0.0020	0.0025
Р		275 - 325	Average	400	0.0008	0.0009	0.0010	0.0012	0.0015	0.0020	0.0025
	Alloy Steel	125 - 175	Average	575	0.0008	0.0009	0.0010	0.0012	0.0015	0.0020	0.0025
	4140, 5140, 8640	175 - 225	Average	500	0.0008	0.0009	0.0010	0.0012	0.0015	0.0020	0.0025
		225 - 275	Average	450	0.0008	0.0009	0.0010	0.0012	0.0015	0.0020	0.0025
		275 - 325	Difficult	400	0.0008	0.0009	0.0010	0.0012	0.0015	0.0020	0.0025
		325 - 375	Difficult	375	0.0008	0.0009	0.0010	0.0012	0.0015	0.0020	0.0025
	High-Strength Alloy	225 - 300	Average	450	0.0008	0.0009	0.0010	0.0012	0.0015	0.0020	0.0025
	4340, 4330V, 300M	300 - 350	Difficult	400	0.0008	0.0009	0.0010	0.0012	0.0015	0.0020	0.0025
		350 - 400	Difficult	350	0.0008	0.0009	0.0010	0.0012	0.0015	0.0020	0.0025
	Structural Steel	100 - 150	Average	600	0.0008	0.0010	0.0012	0.0015	0.0020	0.0025	0.0030
	A36, A285, A516	150 - 250	Average	500	0.0008	0.0010	0.0012	0.0015	0.0020	0.0025	0.0030
		250 - 350	Difficult	450	0.0008	0.0010	0.0012	0.0015	0.0020	0.0025	0.0030
	High-Temp Alloy	140 - 220	Difficult	120	0.0005	0.0006	0.0008	0.0010	0.0015	0.0020	0.0025
S	Hastelloy B, Inconel 600	220 - 310	Difficult	90	0.0005	0.0006	0.0008	0.0010	0.0015	0.0020	0.0025
	Stainless Steel	135 - 185	Difficult	525	0.0005	0.0007	0.0009	0.0015	0.0020	0.0025	0.0030
	303, 416, 420	185 - 275	Difficult	500	0.0005	0.0007	0.0009	0.0015	0.0020	0.0025	0.0030
	Stainless Steel PH	185 - 275	Difficult	300	0.0005	0.0007	0.0009	0.0015	0.0020	0.0025	0.0030
Μ	17-4	275 - 325	Difficult	150	0.0005	0.0007	0.0009	0.0015	0.0020	0.0025	0.0030
	Tool Steel	150 - 200	Difficult	575	0.0008	0.0010	0.0012	0.0015	0.0020	0.0025	0.0030
	H-13, H21, A-4	200 - 250	Difficult	500	0.0008	0.0010	0.0012	0.0015	0.0020	0.0025	0.0030
	Cast Iron	120 - 150	Easy	675	0.0008	0.0012	0.0015	0.0020	0.0030	0.0040	0.0050
	Grey, Ductile, Nodular	150 - 200	Easy	625	0.0008	0.0012	0.0015	0.0020	0.0030	0.0040	0.0050
К		200 - 220	Easy	575	0.0008	0.0012	0.0015	0.0020	0.0030	0.0040	0.0050
		220 - 260	Average	500	0.0008	0.0012	0.0015	0.0020	0.0030	0.0040	0.0050
		260 - 320	Average	475	0.0008	0.0012	0.0015	0.0020	0.0030	0.0040	0.0050
	Wrought Aluminum	30	Easy	1100	0.0015	0.0020	0.0025	0.0030	0.0040	0.0050	0.0060
	6061 T6	180	Easy	1000	0.0015	0.0020	0.0025	0.0030	0.0040	0.0050	0.0060
N	Cast Aluminum** up to 10% silicon	120	Easy	625	0.0015	0.0020	0.0025	0.0030	0.0040	0.0050	0.0060
	Brass	30 - 125	Easy	1100	0.0020	0.0025	0.0030	0.0040	0.0045	0.0055	0.0065

NOTICE: Reduce feed and speed by 30% for tapered thread forms due to additional material removal

*Refer to recommended pass chart on page 168 when referencing material machinability

Recommended Cutting Data | Metric (mm)

Indexable | AccuThread[®] 856 | Positive Rake

			2		Recommended Feed (mm/tooth) by Cutter Diameter 1 flute 1 and 2 3 flutes 5 flutes 7 flutes 8									
			Machinability**		1 f	lute	1 and 2 flutes	3 flutes	5 flutes	7 flutes	8 flutes			
ISO	Material	Hardness (BHN)	oility**	Speed (M/min)	9.53 mm - 12.70 mm	12.71 mm - 19.05 mm	19.06 mm - 25.40 mm	25.41 mm - 38.10 mm	38.11 mm - 50.80 mm	50.81 mm - 69.85 mm	69.86 mm - 88.90 mm			
	Free-Machining Steel	100 - 150	Easy	274	0.020	0.025	0.030	0.038	0.051	0.064	0.076			
	1118, 1215, 12L14, etc.	150 - 200	Easy	213	0.020	0.025	0.030	0.038	0.051	0.064	0.076			
		200 - 250	Easy	152	0.020	0.025	0.030	0.038	0.051	0.064	0.076			
	Low-Carbon Steel	85 - 125	Average	274	0.020	0.025	0.030	0.038	0.051	0.064	0.076			
	1010, 1020, 1025, 1522, 1144	125 - 175	Average	213	0.020	0.025	0.030	0.038	0.051	0.064	0.076			
		175 - 225	Average	183	0.020	0.025	0.030	0.038	0.051	0.064	0.076			
		225 - 275	Average	152	0.020	0.025	0.030	0.038	0.051	0.064	0.076			
	Medium-Carbon Steel	125 - 175	Average	175	0.020	0.023	0.025	0.030	0.038	0.051	0.064			
	1010, 1040, 1050, 1527, 1140	175 - 225	Average	152	0.020	0.023	0.025	0.030	0.038	0.051	0.064			
		225 - 275	Average	137	0.020	0.023	0.025	0.030	0.038	0.051	0.064			
Р		275 - 325	Average	122	0.020	0.023	0.025	0.030	0.038	0.051	0.064			
-	Alloy Steel	125 - 175	Average	175	0.020	0.023	0.025	0.030	0.038	0.051	0.064			
	4140, 5140, 8640	175 - 225	Average	152	0.020	0.023	0.025	0.030	0.038	0.051	0.064			
		225 - 275	Average	137	0.020	0.023	0.025	0.030	0.038	0.051	0.064			
		275 - 325	Difficult	122	0.020	0.023	0.025	0.030	0.038	0.051	0.064			
		325 - 375	Difficult	114	0.020	0.023	0.025	0.030	0.038	0.051	0.064			
	High-Strength Alloy	225 - 300	Average	137	0.020	0.023	0.025	0.030	0.038	0.051	0.064			
	4340, 4330V, 300M	300 - 350	Difficult	122	0.020	0.023	0.025	0.030	0.038	0.051	0.064			
		350 - 400	Difficult	107	0.020	0.023	0.025	0.030	0.038	0.051	0.064			
	Structural Steel	100 - 150	Average	183	0.020	0.025	0.030	0.038	0.051	0.064	0.076			
	A36, A285, A516	150 - 250	Average	152	0.020	0.025	0.030	0.038	0.051	0.064	0.076			
		250 - 350	Difficult	137	0.020	0.025	0.030	0.038	0.051	0.064	0.076			
	High-Temp Alloy	140 - 220	Difficult	37	0.013	0.015	0.020	0.025	0.038	0.051	0.064			
S	Hastelloy B, Inconel 600	220 - 310	Difficult	27	0.013	0.015	0.020	0.025	0.038	0.051	0.064			
_	Stainless Steel	135 - 185	Difficult	160	0.013	0.018	0.023	0.038	0.051	0.064	0.076			
	303, 416, 420	185 - 275	Difficult	152	0.013	0.018	0.023	0.038	0.051	0.064	0.076			
	Stainless Steel PH	185 - 275	Difficult	91	0.013	0.018	0.023	0.038	0.051	0.064	0.076			
Μ	17-4	275 - 325	Difficult	46	0.013	0.018	0.023	0.038	0.051	0.064	0.076			
	Tool Steel	150 - 200	Difficult	175	0.020	0.025	0.030	0.038	0.051	0.064	0.076			
	H-13, H21, A-4	200 - 250	Difficult	152	0.020	0.025	0.030	0.038	0.051	0.064	0.076			
	Cast Iron	120 - 150	Easy	206	0.020	0.030	0.038	0.051	0.076	0.102	0.127			
	Grey, Ductile, Nodular	150 - 200	Easy	191	0.020	0.030	0.038	0.051	0.076	0.102	0.127			
К		200 - 220	Easy	175	0.020	0.030	0.038	0.051	0.076	0.102	0.127			
		220 - 260	Average	152	0.020	0.030	0.038	0.051	0.076	0.102	0.127			
		260 - 320	Average	145	0.020	0.030	0.038	0.051	0.076	0.102	0.127			
	Wrought Aluminum	30	Easy	335	0.038	0.051	0.064	0.076	0.102	0.127	0.152			
N	6061 T6	180	Easy	305	0.038	0.051	0.064	0.076	0.102	0.127	0.152			
Ν	Cast Aluminum** up to 10% silicon	120	Easy	191	0.038	0.051	0.064	0.076	0.102	0.127	0.152			
	Brass	30 - 125	Easy	335	0.051	0.064	0.076	0.102	0.114	0.140	0.165			

NOTICE: Reduce feed and speed by 30% for tapered thread forms due to additional material removal

*Refer to recommended pass chart on ppage 168 when referencing material machinability

Recommended Cutting Data | Imperial (inch)

Indexable | AccuThread[®] 856 | Neutral Rake

					Recommended	Feed (inch/tooth) by	Cutter Diameter
		Hardness		Speed	3 flutes	5 flutes	6 flutes
ISO	Material	(BHN)	Machinability**	(SFM)	1.000" - 1.499"	1.500" - 1.999"	2.000" - 2.750"
	Free-Machining Steel	100 - 150	Easy	765	0.0013	0.0017	0.0021
	1118, 1215, 12L14, etc.	150 - 200	Easy	595	0.0013	0.0017	0.0021
		200 - 250	Easy	425	0.0013	0.0017	0.0021
	Low-Carbon Steel	85 - 125	Average	765	0.0013	0.0017	0.0021
	1010, 1020, 1025, 1522, 1144	125 - 175	Average	595	0.0013	0.0017	0.0021
		175 - 225	Average	510	0.0013	0.0017	0.0021
		225 - 275	Average	425	0.0013	0.0017	0.0021
	Medium-Carbon Steel	125 - 175	Average	490	0.0010	0.0013	0.0017
	1010, 1040, 1050, 1527, 1140	175 - 225	Average	425	0.0010	0.0013	0.0017
		225 - 275	Average	380	0.0010	0.0013	0.0017
		275 - 325	Average	340	0.0010	0.0013	0.0017
Р	Alloy Steel	125 - 175	Average	490	0.0010	0.0013	0.0017
	4140, 5140, 8640	175 - 225	Average	425	0.0010	0.0013	0.0017
		225 - 275	Average	380	0.0010	0.0013	0.0017
		275 - 325	Difficult	340	0.0010	0.0013	0.0017
		325 - 375	Difficult	320	0.0010	0.0013	0.0017
	High-Strength Alloy	225 - 300	Average	390	0.0010	0.0013	0.0017
	4340, 4330V, 300M	300 - 350	Difficult	340	0.0010	0.0013	0.0017
		350 - 400	Difficult	300	0.0010	0.0013	0.0017
	Structural Steel	100 - 150	Average	510	0.0013	0.0017	0.0021
	A36, A285, A516	150 - 250	Average	425	0.0013	0.0017	0.0021
		250 - 350	Difficult	390	0.0013	0.0017	0.0021
	High-Temp Alloy	140 - 220	Difficult	_	_	_	_
S	Hastelloy B, Inconel 600	220 - 310	Difficult	_	_	_	_
	Stainless Steel	135 - 185	Difficult	_	_	_	_
	303, 416, 420	185 - 275	Difficult	_	-	-	-
	Stainless Steel PH	185 - 275	Difficult	_	-	-	-
Μ	17-4	275 - 325	Difficult	_	-	-	-
	Tool Steel	150 - 200	Difficult	-	-	-	-
	H-13, H21, A-4	200 - 250	Difficult	-	_	-	-
	Cast Iron	120 - 150	Easy	575	0.0017	0.0026	0.0034
	Grey, Ductile, Nodular	150 - 200	Easy	525	0.0017	0.0026	0.0034
к		200 - 220	Easy	490	0.0017	0.0026	0.0034
		220 - 260	Average	425	0.0017	0.0026	0.0034
		260 - 320	Average	400	0.0017	0.0026	0.0034
	Wrought Aluminum	30	Easy	_	_	_	_
	6061 T6	180	Easy	-	-	-	-
Ν	Cast Aluminum** up to 10% silicon	120	Easy	-	-	-	-
	Brass	30 - 125	Easy	-	-	-	-

NOTICE: Reduce feed and speed by 30% for tapered thread forms due to additional material removal

*Refer to recommended pass chart on page 168 when referencing material machinability

Recommended Cutting Data | Metric (mm)

Indexable | AccuThread[®] 856 | Neutral Rake

					Recommended	Feed (mm/tooth) by	Cutter Diameter
					3 flutes	5 flutes	6 flutes
ISO	Material	Hardness (BHN)	Machinability**	Speed (M/min)	25.41 mm - 38.09 mm	38.10 mm - 50.77 mm	50.78 mm - 69.85 mm
	Free-Machining Steel	100 - 150	Easy	233	0.032	0.043	0.054
	1118, 1215, 12L14, etc.	150 - 200	Easy	181	0.032	0.043	0.054
		200 - 250	Easy	129	0.032	0.043	0.054
	Low-Carbon Steel	85 - 125	Average	233	0.032	0.043	0.054
	1010, 1020, 1025, 1522, 1144	125 - 175	Average	181	0.032	0.043	0.054
		175 - 225	Average	156	0.032	0.043	0.054
		225 - 275	Average	129	0.032	0.043	0.054
	Medium-Carbon Steel	125 - 175	Average	149	0.026	0.032	0.043
	1010, 1040, 1050, 1527, 1140	175 - 225	Average	129	0.026	0.032	0.043
		225 - 275	Average	116	0.026	0.032	0.043
		275 - 325	Average	104	0.026	0.032	0.043
Р	Alloy Steel	125 - 175	Average	149	0.026	0.032	0.043
	4140, 5140, 8640	175 - 225	Average	129	0.026	0.032	0.043
		225 - 275	Average	116	0.026	0.032	0.043
		275 - 325	Difficult	104	0.026	0.032	0.043
		325 - 375	Difficult	97	0.026	0.032	0.043
	High-Strength Alloy	225 - 300	Average	116	0.026	0.032	0.043
	4340, 4330V, 300M	300 - 350	Difficult	104	0.026	0.032	0.043
		350 - 400	Difficult	91	0.026	0.032	0.043
	Structural Steel	100 - 150	Average	156	0.032	0.043	0.054
	A36, A285, A516	150 - 250	Average	129	0.032	0.043	0.054
		250 - 350	Difficult	116	0.032	0.043	0.054
	High-Temp Alloy	140 - 220	Difficult	_	_	_	_
S	Hastelloy B, Inconel 600	220 - 310	Difficult	-	_	-	_
	Stainless Steel	135 - 185	Difficult	_	_	_	_
	303, 416, 420	185 - 275	Difficult	_	-	-	-
м	Stainless Steel PH	185 - 275	Difficult	_	-	-	-
IVI	17-4	275 - 325	Difficult	_	-	-	_
	Tool Steel	150 - 200	Difficult	-	-	-	-
	H-13, H21, A-4	200 - 250	Difficult	-	-	-	_
	Cast Iron	120 - 150	Easy	175	0.043	0.065	0.087
	Grey, Ductile, Nodular	150 - 200	Easy	162	0.043	0.065	0.087
к	,,,	200 - 220	Easy	149	0.043	0.065	0.087
		220 - 260	Average	129	0.043	0.065	0.087
		260 - 320	Average	123	0.043	0.065	0.087
	Wrought Aluminum	30	Easy	_	_	_	_
	6061 T6	180	Easy	_	-	-	-
N	Cast Aluminum** up to 10% silicon	120	Easy	_	-	-	_
	Brass	30 - 125	Easy	_	-	-	-

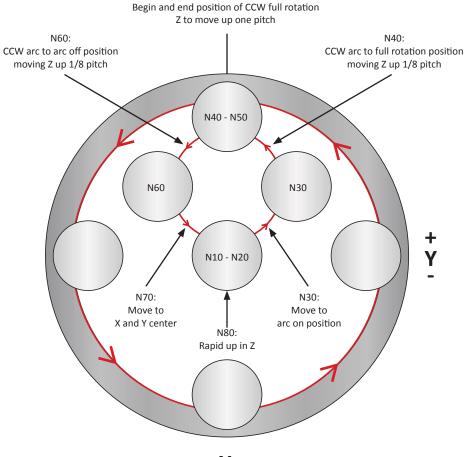
NOTICE: Reduce feed and speed by 30% for tapered thread forms due to additional material removal

*Refer to recommended pass chart on page 168 when referencing material machinability

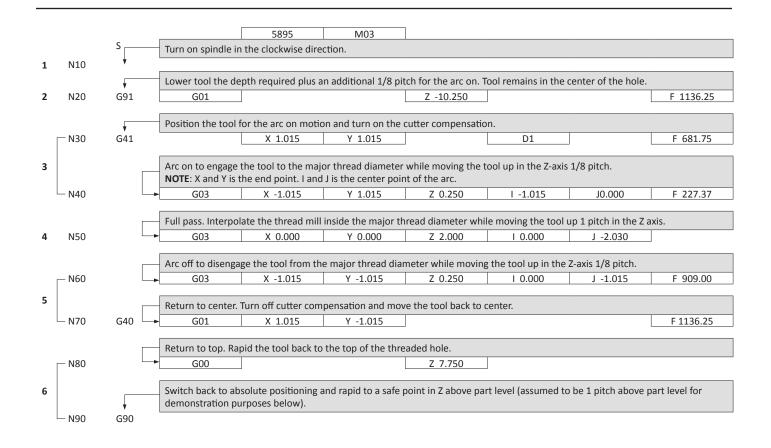
Thread Mill Programming Guide

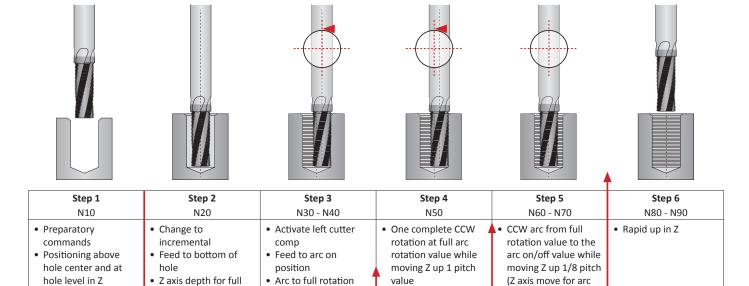
What you need to know

- Thread milling can be easily accomplished with simple G code programming
- If your machine is capable of 3 axis (helical) interpolation, you can and should be thread milling
- Basic programming of a one pass thread mill can be achieved in 6 basic steps


AVAILABLE ONLINE 24/7 or download **INSTA-CODE***

visit www.alliedmachine.com


The following are examples of how to calculate and program a M16x2 right hand thread that will be 10mm deep produced in one pass


Major thread diameter	16mm	Major diameter of thread
Threads per inch		(only applies to imperial threads)
Length of thread	10mm	Desired length of cut
Velocity	221 M/min	Recommended velocity for material to be cut
Feed per flute	0.038mm/tooth	Recommended feed rate per cutting edge
Number of flutes	4	Number of flutes on tool to be used
Cutter diameter	11.94mm	Diameter of cutting tool
Using the information above, the value	s can be calculated:	
Pitch	2.0mm	Use 1/ threads per inch for imperial
Speed	5895 RPM	(318.47 • M/min) / cutter diameter or (SFM • 3.82) / cutter diameter
Linear feed	896.04mm/min	RPM • (Feed per flute • Number of flutes)
Feed rate for thread milling	227.37mm/min	((Major thread diameter - cutter diameter) / Major thread diameter) • Linear feed
Z-axis travel on arc on	0.25mm	(Pitch / 8)
Z-axis travel for full thread	10.25mm	(Pitch / 8) + Length of cut
Arc on/off	1.015mm	(Major thread diameter - cutter diameter) / 4
Full rotation value	2.030mm	(Major thread diameter - cutter diameter) / 2

Major thread diameter	16 mm	Feed rate for thread milling	227.37 mm/min	Arc on/off value	1.015 mm
Cutter diameter	11.94 mm	Z axis depth for full thread	10.25 mm	Full rotation value	2.030 mm
Length of thread	10.00 mm	Z axis for arc on/off	0.25 mm	Pitch value	2.00 mm

- X +

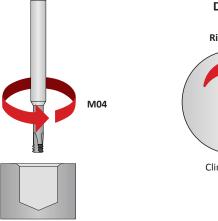
off)

value while moving Z

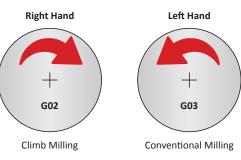
up 1/8 pitch • Z axis move for arc on

• In absolute position

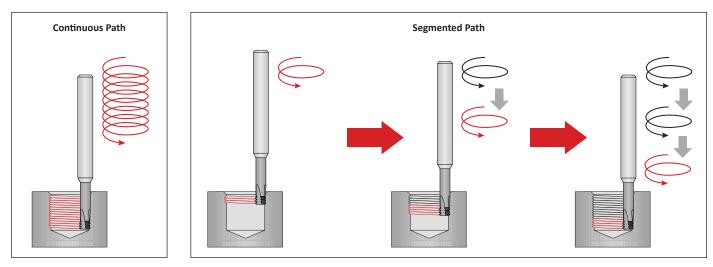
mode

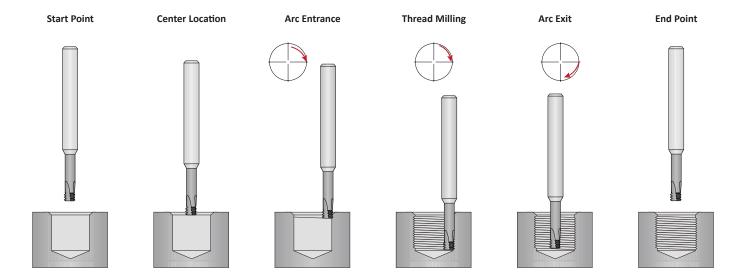

thread

Technical Information


AccuThread[®] T3

Spindle Rotation


Tools are left-hand cutting. The left-hand cut allows the tool to climb mill when creating a right hand thread with an AccuThread T3. Climb milling reduces deflection and heat generated during the cut.



Direction of Helical Interpolation

Programming Z-Axis Cutting Path

Notes

Thread Mill Troubleshooting Guide

		Problem										
	Causes	Thread mill is showing accelerated or excessive wear	Cutting edges are chipping	Thread mill is breaking in the first hole of part	Thread mill is creating excessive chatter	Out of round thread is produced	Bell-mouthed thread form (small at bottom, big at top)	Part rejection because of rough flank finish	Steps in thread profile	Gauge difference from part to part	Machine not making correct paths to create thread profile	Control not accepting the program
90	Incorrect tool selection			1	1							
Catalog	Incorrect speed and feed selection	2, 3	2, 3		2, 3			2, 3				
	RPM too high	5										
	RPM too low				4		4	4				
	Machine tool specifications restrict RPMs			5, 19								
and Feed	Feed rate too high		7	7			7	7	7			
d and	Feed rate too low	6										
Speed	Incorrect adjusted feed rate adjustment ratio			12								
	Machine tool specification restricts feed rate					7, 19						
	Ramp-in is programmed as an axial move			20					20			
	Thread mill moved or slipped in its holding device	13	13	13	13			13	13			
	Tool is sticking out of the holder too far	15	15	15	15			15	15	15		
_	Runout between thread mill and holder				10			10				
Tool	Incorrect coating creating built up edge	8, 17								8, 17		
	Helix angle too low				9			9				
	Excessive thread mill wear								11	11		
	Excessive tool pressure	7, 11, 14					7, 11, 14					
Je	Workpiece moving in its fixturing	16	16	16	16			16		16		
Machine	Insufficient coolant pressure or flow	17	17									
2	Lack of machine rigidity	16	16		16		16	16				
	Incorrect number of passes			22			22					
	Incorrect program variables			18, 26							18, 26	
Programming	Did not account for X/Y radial moves for tapered threads										24, 26	
ogran	Incorrect cutter compensation variables			23, 26								23, 26
Pro	Helical interpolation option not on machine or turned off										21, 26	21, 26
	Machine tool control is not formatted to standard EIA/ASCII/ISO Code											25, 26

Troubleshooting Solutions

- 1. Refer to catalog to ensure proper tool selection.
- 2. Verify the correct speed was selected from the catalog speed and feed chart.
- 3. Verify the correct feed rate was selected from the catalog speed and feed chart.
- 4. Increase the spindle speed (RPM).
- 5. Decrease the spindle speed (RPM).
- 6. Increase feed per tooth.
- 7. Decrease feed per tooth.
- 8. Investigate other coatings.
- 9. Increase the tool helix.
- 10. Gauge runout between thread mill and tool holder.
- 11. Perform tool change at quicker intervals.
- 12. Adjust the feed rate ratio properly to the correct actual penetration rate for internal threads. Refer to speed and feed pages for formula.
- **13.** Use hydraulic clamping chuck.
- 14. Check the tool for excessive wear. Beginning threads will wear the fastest.
- 15. Make the amount of overhang in the holding device as short as possible.
- 16. Verify the workpiece is properly clamped. Retighten or increase stability if necessary.
- 17. Increase the coolant flow and volume.
- 18. Check the milling program variables, especially the positive or negative value associated with I and J values.
- 19. Make sure the machine has the appropriate axis and path speed capabilities.
- 20. Make sure the thread mill is arcing in the major diameter instead of making a radial move.
- 21. Make sure the machine tool has a helical interpolation option that is on.
- 22. Increase the number of thread mill passes.
- 23. Make sure the cutter compensation variables are input into the G41 program line.
- 24. Adjust the program for pipe tap threads to taper out on diameter in X/Y directions to create proper form.
- 25. Request information from the machine tool builder regarding its programming formats.
- 26. Scan and email a copy of your program to the Application Engineering department at appeng@alliedmachine.com.

s e c t i o n X15

Superion[®] Solid Carbide Drilling

Imperial		201 - 204
Metric		205 - 208
Coolant Reco	mmendations	209
Deep Hole Dr	illing Guidelines	210
Troubleshoot	ing	211 - 212

							Feed Rate (IPF	R) by Diameter
		Hardness	General Application			Speed		
ISO	Material	(BHN)	Geometry	Special Geometry*	Coating	(SFM)	0.118 - 0.157	0.157 - 0.197
	Free Machining Steel	100 - 150	HPM	HPM2M	AM420	500	0.006	0.007
	1118, 1215, 12L14, etc.	150 - 200	HPM	HPM2M	AM420	475	0.005	0.0065
		200 - 250	HPS	A HPS2M	AM420	450	0.004	0.006
	Low Carbon Steel	85 - 125	HPM	HPM2M	AM420	455	0.006	0.007
	1010, 1020, 1025,	125 - 175	HPM	HPM2M	AM420	440	0.006	0.0065
	1522, 1144, etc.	175 - 225	HPM	HPM2M	AM420	425	0.005	0.006
		225 - 275	HPS	A HPS2M	AM420	410	0.0045	0.006
	Medium Carbon Steel	125 - 175	HPM	HPM2M	AM420	440	0.0055	0.006
	1030, 1040, 1050, 1527,	175 - 225	HPM	HPM2M	AM420	430	0.005	0.0055
	1151, etc.	225 - 275	HPS	A HPS2M	AM420	400	0.0045	0.005
		275 - 325	HPS	A HPS2M	AM420	375	0.004	0.005
D	Alloy Steel	125-175	HPM	HPM2M	AM420	405	0.0055	0.006
P	4140, 5140, 8640, etc.	175-225	HPM	HPM2M	AM420	380	0.005	0.0055
		225-275	HPS	A HPS2M	AM420	365	0.004	0.005
		275-325	HPS	A HPS2M	AM420	340	0.004	0.005
		325-375	HP106	-	AM420	325	0.0035	0.0045
	High Strength Alloy	225 - 300	HPS	A HPS2M	AM420	340	0.004	0.005
	4340, 4330V, 300M, etc.	300 - 350	HPS	A HPS2M	AM420	320	0.004	0.005
		350 - 400	HP106	-	AM420	250	0.0035	0.004
	Structural Steel	100 - 150	HPS	A HPS2M	AM420	450	0.0055	0.0065
	A36, A285, A516, etc.	150 - 250	HPS	A HPS2M	AM420	425	0.0045	0.0055
		250 - 350	HPS	A HPS2M	AM420	390	0.004	0.005
	Tool Steel	150 - 200	HPM	HPM2M	AM420	270	0.0045	0.0045
	H-13, H-21, A-4, 0-2, S-3, etc.	200 -250	HPS	A HPS2M	AM420	250	0.004	0.004
	High Temp Alloy	140-220	HPS	_	AM460	110	0.003	0.003
	Hastelloy B, Inconel 600, etc.	220-310	HPS	-	AM460	100	0.002	0.002
	Titanium Alloy	140-220	HPS	-	AM460	150	0.0025	0.003
S	-	220-310	HPS	-	AM460	120	0.002	0.0025
	Aerospace Alloy	185-275	HPS	_	AM460	160	0.003	0.003
	S82	275-350	HPS	-	AM460	130	0.002	0.002

*Special Geometry

Use HPM2M for greater drill depths over 8xD. HPM2M is used for any interruptions and produces a better hole tolerance and finish in comparison to HPM.

Luse HPS2M for greater drill depths over 8xD. HPS2M is used for any interruptions and produces a better hole tolerance and finish in comparison to HPS.

Parameter Reductions for Length to Diameter Relationships						
6xD	0.90 reduction for speed and feed adjustment					
⊥ 9xD	0.80 reduction for speed and feed adjustment					
<u> </u>	0.70 reduction for speed and feed adjustment					
🔔 15xD - 20xD	0.60 reduction for speed and feed adjustment					

Flood Coolant Applications

Recommend if diameter to depth is less than or equal to three times the diameter. Reduce speed by 20% and if needed drop feed by 10% to maintain optimal chip formation

Parameter Recommendations for Step Drills

- Feed rate is based off the pilot diameter
- Speed rate is based off the largest step diameter

X WARNING Refer to Speed and Feed charts for recommended adjustments to speeds and feeds. Refer to page 196 for deep hole drilling guidelines. Visit www.alliedmachine.com/DeepHoleGuidelines for the most up-to-date information and procedures. Factory technical assistance is available for your specific applications through our Application Engineering Team. *ext*: **7611** | *email:* appeng@alliedmachine.com

Feed Rate (IPR) by Diameter								
0.197 - 0.236	0.236 - 0.276	0.276 - 0.315	0.315 - 0.394	0.394 - 0.472	0.472 - 0.551	0.551 - 0.630	0.630 - 0.709	0.709 - 0.787
0.008	0.009	0.010	0.012	0.013	0.015	0.017	0.018	0.020
0.0075	0.0085	0.0095	0.011	0.012	0.014	0.016	0.017	0.019
0.007	0.008	0.009	0.010	0.011	0.013	0.015	0.016	0.018
0.008	0.009	0.010	0.012	0.0135	0.0145	0.0165	0.0175	0.0195
0.0075	0.0085	0.0095	0.0115	0.013	0.014	0.016	0.017	0.019
0.007	0.008	0.009	0.011	0.0125	0.0135	0.015	0.016	0.018
0.007	0.008	0.009	0.010	0.012	0.013	0.015	0.016	0.018
0.007	0.0075	0.009	0.011	0.012	0.013	0.0145	0.016	0.0175
0.006	0.007	0.0085	0.0105	0.0115	0.0125	0.014	0.0155	0.017
0.006	0.007	0.0085	0.0105	0.011	0.0125	0.0135	0.0145	0.0165
0.0055	0.0065	0.008	0.010	0.011	0.012	0.013	0.014	0.016
0.0065	0.0075	0.0085	0.0105	0.0115	0.013	0.0145	0.016	0.017
0.006	0.007	0.008	0.010	0.011	0.0125	0.014	0.0155	0.0165
0.006	0.0065	0.008	0.0095	0.0105	0.012	0.0135	0.0145	0.0155
0.0055	0.006	0.0075	0.009	0.010	0.0115	0.013	0.014	0.015
0.005	0.0055	0.007	0.009	0.010	0.011	0.0125	0.0135	0.0145
0.006	0.0065	0.008	0.0095	0.0105	0.012	0.0135	0.0145	0.0155
0.0055	0.006	0.0075	0.009	0.01	0.0115	0.013	0.014	0.015
0.0045	0.0055	0.0065	0.008	0.0085	0.010	0.011	0.012	0.013
0.007	0.008	0.0095	0.012	0.013	0.014	0.0155	0.016	0.0185
0.006	0.007	0.008	0.011	0.012	0.012	0.0135	0.014	0.016
0.0055	0.0065	0.0075	0.0095	0.0105	0.0115	0.0125	0.0135	0.015
0.005	0.006	0.007	0.0095	0.010	0.011	0.0125	0.013	0.015
0.0045	0.0055	0.0065	0.0085	0.009	0.010	0.0115	0.012	0.014
0.0035	0.004	0.0045	0.0055	0.006	0.0065	0.007	0.0075	0.0085
0.003	0.0035	0.0035	0.0045	0.005	0.006	0.0065	0.0065	0.0075
0.0035	0.004	0.0045	0.006	0.006	0.007	0.0075	0.008	0.009
0.003	0.0035	0.004	0.005	0.0055	0.006	0.007	0.007	0.008
0.0035	0.004	0.004	0.0045	0.0055	0.006	0.0065	0.007	0.008
0.003	0.0035	0.0035	0.004	0.0045	0.0055	0.006	0.006	0.007

*Special Geometry

6xD

🏝 9xD

12xD

15xD - 20xD

Parameter Reductions for Length to Diameter Relationships

0.90 reduction for speed and feed adjustment

0.80 reduction for speed and feed adjustment

0.70 reduction for speed and feed adjustment

0.60 reduction for speed and feed adjustment

Use HPM2M for greater drill depths over 8xD. HPM2M is used for any interruptions and produces a better hole tolerance and finish in comparison to HPM.

Use HPS2M for greater drill depths over 8xD. HPS2M is used for any interruptions and produces a better hole tolerance and finish in comparison to HPS.

Flood Coolant Applications

Recommend if diameter to depth is less than or equal to three times the diameter. Reduce speed by 20% and if needed drop feed by 10% to maintain optimal chip formation

Parameter Recommendations for Step Drills

- Feed rate is based off the pilot diameter
- Speed rate is based off the largest step diameter

1. WARNING Refer to Speed and Feed charts for recommended adjustments to speeds and feeds. Refer to page 196 for deep hole drilling guidelines. Visit www.alliedmachine.com/DeepHoleGuidelines for the most up-to-date information and procedures. Factory technical assistance is available for your specific applications through our Application Engineering Team. *ext:* **7611** | *email:* appeng@alliedmachine.com

							Feed Rate (IPF	R) by Diameter
ISO	Material	Hardness (BHN)	General Application Geometry	Special Geometry	Coating	Speed (SFM)	0.118 - 0.157	0.157 - 0.197
	Stainless Steel 400 Series	185-275	HPS	A HPS2M	AM460	250	0.004	0.0045
	416, 420, etc.	275-350	HPS	A HPS2M	AM460	195	0.0035	0.004
м	Stainless Steel 300 Series	135-185	HPS	A HPS2M	AM460	200	0.0035	0.004
IVI	304, 316, 17-4PH, etc.	185-275	HPS	A HPS2M	AM460	175	0.003	0.0035
	Super Duplex Stainless Steel	135-185	HPS	A HPS2M	AM460	150	0.0035	0.004
		185-275	HPS	HPS2M	AM460	135	0.003	0.0035
	Wear Plate	400	HP106	_	AM420	170	0.002	0.002
	Hardox, AR400, T-1, etc.	500	HP106	-	AM420	140	0.002	0.002
Н		600	HP106	_	AM420	100	0.002	0.002
	Hardened Steel	300-400	HP106	_	AM420	170	0.002	0.002
		400-500	HP106	_	AM420	140	0.002	0.002
	SG/Nodular Cast Iron	120-150	HPS2M	CIB	AM440	500	0.008	0.0085
		150-200	HPS2M	🔶 CIB	AM440	485	0.007	0.0075
		200-220	HPS2M	🔶 CIB	AM440	470	0.006	0.007
		220-260	HPS2M	🔶 CIB	AM440	455	0.006	0.007
к		260-320	HPS2M	🔶 CIB	AM440	415	0.005	0.0065
ĸ	Gray/White Cast Iron	120-150	HPS2M	🔶 CIB	AM440	545	0.009	0.0095
		150-200	HPS2M	🔶 CIB	AM440	530	0.008	0.0085
		200-220	HPS2M	🔶 CIB	AM440	515	0.007	0.008
		220-260	HPS2M	CIB	AM440	475	0.007	0.008
		260-320	HPS2M	CIB	AM440	450	0.006	0.0075
	Cast Aluminum	30	HPF	🔘 САВ	TiCN	950	0.0075	0.0085
N		180	HPF	О САВ	TiCN	755	0.0065	0.0075
IN	Wrought Aluminum	30	HPF	🛆 WAB	TiCN	1100	0.0075	0.0085
		180	HPF	🛆 WAB	TiCN	950	0.0065	0.0075
	Aluminum Bronze	100-200	HPM	-	TiCN	370	0.004	0.005
		200-250	HPM	_	TiCN	310	0.0035	0.0045
	Brass	100	BCB	-	TIN	750	0.005	0.006
	Copper	60	BCB	_	TIN	510	0.002	0.0025

*Special Geometry

Use HPS2M for greater drill depths over 8xD. HPS2M is used for any interruptions and produces a better hole tolerance and finish in comparison to HPS.

CIB (Cast Iron Burnish): Unique point, web, and cutting edge designed to significantly improve hole finish and hole tolerance. NOTE: Reduce speed and feed parameters above from 40% - 50% reduction.

CAB (Cast Aluminum Burnish): Unique point, web, and cutting edge designed to significantly improve hole finish and hole tolerance. NOTE: Reduce speed and feed parameters above from 40% - 50% reduction.

 Δ WAB (Wrought Aluminum Burnish): Unique point, web, and cutting edge designed to significantly improve hole finish and hole tolerance.

NOTE: Reduce speed and feed parameters above from 40% - 50% reduction.

Parameter Reductions for Length to Diameter Relationships							
6xD	0.90 reduction for speed and feed adjustment						
<u> </u>	0.80 reduction for speed and feed adjustment						
<u> </u>	0.70 reduction for speed and feed adjustment						
15xD - 20xD	0.60 reduction for speed and feed adjustment						

Flood Coolant Applications

Recommend if diameter to depth is less than or equal to three times the diameter. Reduce speed by 20% and if needed drop feed by 10% to maintain optimal chip formation

Parameter Recommendations for Step Drills

- Feed rate is based off the pilot diameter
- Speed rate is based off the largest step diameter

1. WARNING Refer to Speed and Feed charts for recommended adjustments to speeds and feeds. Refer to page 196 for deep hole drilling guidelines. Visit www.alliedmachine.com/DeepHoleGuidelines for the most up-to-date information and procedures. Factory technical assistance is available for your specific applications through our Application Engineering Team. *ext:* 7611 | *email:* appeng@alliedmachine.com

	Feed Rate (IPR) by Diameter							
0.197 - 0.236	0.236 - 0.276	0.276 - 0.315	0.315 - 0.394	0.394 - 0.472	0.472 - 0.551	0.551 - 0.630	0.630 - 0.709	0.709 - 0.787
0.0055	0.0065	0.0075	0.009	0.0095	0.010	0.011	0.011	0.012
0.0045	0.0055	0.0065	0.008	0.0085	0.0095	0.010	0.010	0.011
0.0045	0.005	0.006	0.007	0.0075	0.008	0.009	0.0095	0.0105
0.004	0.004	0.005	0.006	0.0065	0.007	0.008	0.008	0.009
0.0045	0.005	0.006	0.007	0.007	0.0075	0.0075	0.008	0.0085
0.004	0.004	0.0045	0.0055	0.0055	0.0065	0.0065	0.007	0.007
0.002	0.003	0.003	0.004	0.005	0.0055	0.007	0.008	0.009
0.002	0.003	0.003	0.004	0.003	0.0035	0.007	0.008	0.009
0.002	0.003	0.003	0.004	0.004	0.0045	0.006	0.007	0.008
0.002	0.003	0.003	0.004	0.004	0.0045	0.000	0.007	0.008
0.002	0.003	0.003	0.004	0.003	0.0035	0.007	0.008	0.009
0.002	0.005	0.005	0.004	0.004	0.0045	0.000	0.007	0.008
0.009	0.011	0.012	0.014	0.0155	0.017	0.019	0.0205	0.022
0.0085	0.01	0.0115	0.013	0.014	0.0155	0.0165	0.0185	0.021
0.008	0.009	0.011	0.012	0.013	0.014	0.015	0.017	0.019
0.008	0.009	0.011	0.012	0.013	0.014	0.015	0.017	0.019
0.0075	0.0085	0.01	0.0115	0.0125	0.0135	0.0145	0.0155	0.017
0.010	0.012	0.013	0.0155	0.0165	0.0185	0.020	0.022	0.024
0.0095	0.011	0.0125	0.0145	0.0155	0.0165	0.0175	0.0195	0.022
0.009	0.010	0.012	0.013	0.014	0.015	0.016	0.018	0.020
0.009	0.010	0.012	0.013	0.014	0.015	0.016	0.018	0.020
0.0085	0.0095	0.0115	0.0125	0.0135	0.0145	0.0155	0.0165	0.019
0.009	0.010	0.0125	0.0145	0.016	0.018	0.0195	0.020	0.022
0.0085	0.009	0.0115	0.0135	0.0155	0.017	0.0185	0.019	0.021
0.0095	0.011	0.0125	0.0145	0.017	0.0185	0.020	0.021	0.023
0.0085	0.010	0.0115	0.0135	0.0155	0.0175	0.019	0.020	0.022
0.006	0.007	0.008	0.009	0.01	0.012	0.013	0.014	0.015
0.005	0.006	0.0065	0.007	0.008	0.01	0.011	0.012	0.014
0.007	0.009	0.010	0.0115	0.0125	0.014	0.016	0.017	0.018
0.003	0.003	0.003	0.004	0.004	0.004	0.005	0.006	0.007

*Special Geometry

Use HPS2M for greater drill depths over 8xD. HPS2M is used for any interruptions and produces a better hole tolerance and finish in comparison to HPS.

CIB (Cast Iron Burnish): Unique point, web, and cutting edge designed to significantly improve hole finish and hole tolerance. NOTE: Reduce speed and feed parameters above from 40% - 50% reduction.

CAB (Cast Aluminum Burnish): Unique point, web, and cutting edge designed to significantly improve hole finish and hole tolerance. NOTE: Reduce speed and feed parameters above from 40% - 50% reduction.

WAB (Wrought Aluminum Burnish): Unique point, web, and cutting edge designed to significantly improve hole finish and hole tolerance. **NOTE:** Reduce speed and feed parameters above from 40% - 50% reduction.

Parameter Reductions	or Length to Diameter	Relationships
----------------------	-----------------------	---------------

6xD	0.90 reduction for speed and feed adjustment
<u></u>	0.80 reduction for speed and feed adjustment
<u> </u>	0.70 reduction for speed and feed adjustment
🛝 15xD - 20xD	0.60 reduction for speed and feed adjustment

Flood Coolant Applications

Recommend if diameter to depth is less than or equal to three times the diameter. Reduce speed by 20% and if needed drop feed by 10% to maintain optimal chip formation

Parameter Recommendations for Step Drills

- Feed rate is based off the pilot diameter
- Speed rate is based off the largest step diameter

1 WARNING Refer to Speed and Feed charts for recommended adjustments to speeds and feeds. Refer to page 196 for deep hole drilling guidelines. Visit www.alliedmachine.com/DeepHoleGuidelines for the most up-to-date information and procedures. Factory technical assistance is available for your specific applications through our Application Engineering Team. *ext:* 7611 | *email:* appeng@alliedmachine.com

							· ·	mm/rev) by neter
ISO	Material	Hardness (BHN)	General Application Geometry	Special Geometry*	Coating	Speed (M/min)	3.00 - 4.00	4.00 - 5.00
	Free Machining Steel	100-150	HPM	HPM2M	AM420	152	0.15	0.18
	1118, 1215, 12L14, etc.	150-200	HPM	HPM2M	AM420	145	0.13	0.17
		200-250	HPS	A HPS2M	AM420	137	0.10	0.15
	Low Carbon Steel	85-125	HPM	HPM2M	AM420	139	0.15	0.18
	1010, 1020, 1025,	125-175	HPM	HPM2M	AM420	134	0.15	0.17
	1522, 1144, etc.	175-225	HPM	HPM2M	AM420	130	0.13	0.15
		225-275	HPS	A HPS2M	AM420	125	0.11	0.15
	Medium Carbon Steel	125-175	HPM	HPM2M	AM420	134	0.14	0.15
	1030, 1040, 1050, 1527,	175-225	HPM	HPM2M	AM420	131	0.13	0.14
	1151, etc.	225-275	HPS	A HPS2M	AM420	122	0.11	0.13
		275-325	HPS	A HPS2M	AM420	114	0.10	0.13
P	Alloy Steel	125-175	HPM	HPM2M	AM420	123	0.14	0.15
P	4140, 5140, 8640, etc.	175-225	HPM	HPM2M	AM420	116	0.13	0.14
		225-275	HPS	A HPS2M	AM420	111	0.10	0.13
		275-325	HPS	A HPS2M	AM420	104	0.10	0.13
		325-375	HP106	-	AM420	99	0.09	0.11
	High Strength Alloy	225-300	HPS	A HPS2M	AM420	104	0.10	0.13
	4340, 4330V, 300M, etc.	300-350	HPS	A HPS2M	AM420	98	0.10	0.13
		350-400	HP106	-	AM420	76	0.09	0.10
	Structural Steel	100-150	HPS	A HPS2M	AM420	137	0.14	0.17
	A36, A285, A516, etc.	150-250	HPS	A HPS2M	AM420	130	0.11	0.14
		250-350	HPS	🔺 HPS2M	AM420	119	0.10	0.13
	Tool Steel	150-200	HPM	HPM2M	AM420	82	0.11	0.11
	H-13, H-21, A-4, 0-2, S-3, etc.	200-250	HPS	A HPS2M	AM420	76	0.10	0.10
	High Temp Alloy	140-220	HPS	-	AM460	34	0.08	0.08
	Hastelloy B, Inconel 600, etc.	220-310	HPS	-	AM460	30	0.05	0.05
s	Titanium Alloy	140-220	HPS	-	AM460	46	0.06	0.08
3		220-310	HPS	-	AM460	37	0.05	0.06
	Aerospace Alloy	185-275	HPS	-	AM460	49	0.08	0.08
	S82	275-350	HPS	_	AM460	40	0.05	0.05

*Special Geometry

Use HPM2M for greater drill depths over 8xD. HPM2M is used for any interruptions and produces a better hole tolerance and finish in comparison to HPM.

Use HPS2M for greater drill depths over 8xD. HPS2M is used for any interruptions and produces a better hole tolerance and finish in comparison to HPS.

Parameter Reductions for Length to Diameter Relationships						
6xD	0.90 reduction for speed and feed adjustment					
⊥ 9xD	0.80 reduction for speed and feed adjustment					
<u> </u>	0.70 reduction for speed and feed adjustment					
🏝 15xD - 20xD	0.60 reduction for speed and feed adjustment					

Flood Coolant Applications

Recommend if diameter to depth is less than or equal to three times the diameter. Reduce speed by 20% and if needed drop feed by 10% to maintain optimal chip formation

Parameter Recommendations for Step Drills

- Feed rate is based off the pilot diameter
- Speed rate is based off the largest step diameter

X WARNING Refer to Speed and Feed charts for recommended adjustments to speeds and feeds. Refer to page 196 for deep hole drilling guideline. Visit www.alliedmachine.com/DeepHoleGuidelines for the most up-to-date information and procedures. Factory technical assistance is available for your specific applications through our Application Engineering Team. *ext:* **7611** | *email:* appeng@alliedmachine.com

Feed Rate (mm/rev) by Diameter								
5.00 - 6.00	6.00 - 7.00	7.00 - 8.00	8.00 - 10.00	10.00 - 12.00	12.00- 14.00	14.00 - 16.00	16.00 - 18.00	18.00 - 20.00
0.20	0.23	0.25	0.30	0.33	0.38	0.43	0.46	0.51
0.19	0.22	0.24	0.28	0.30	0.36	0.41	0.43	0.48
0.18	0.20	0.23	0.25	0.28	0.33	0.38	0.41	0.46
0.20	0.23	0.25	0.30	0.34	0.37	0.42	0.44	0.50
0.19	0.22	0.24	0.29	0.33	0.36	0.41	0.43	0.48
0.18	0.20	0.23	0.28	0.32	0.34	0.38	0.41	0.46
0.18	0.20	0.23	0.25	0.30	0.33	0.38	0.41	0.46
0.18	0.19	0.23	0.28	0.30	0.33	0.37	0.41	0.44
0.15	0.18	0.22	0.27	0.29	0.32	0.36	0.39	0.43
0.15	0.18	0.22	0.27	0.28	0.32	0.34	0.37	0.42
0.14	0.17	0.20	0.25	0.28	0.30	0.33	0.36	0.41
0.17	0.19	0.22	0.27	0.29	0.33	0.37	0.41	0.43
0.15	0.18	0.20	0.25	0.28	0.32	0.36	0.39	0.42
0.15	0.17	0.20	0.24	0.27	0.30	0.34	0.37	0.39
0.14	0.15	0.19	0.23	0.25	0.29	0.33	0.36	0.38
0.13	0.14	0.18	0.23	0.25	0.28	0.32	0.34	0.37
0.15	0.17	0.20	0.24	0.27	0.30	0.34	0.37	0.39
0.14	0.15	0.19	0.23	0.25	0.29	0.33	0.36	0.38
0.11	0.14	0.17	0.20	0.22	0.25	0.28	0.30	0.33
0.18	0.20	0.24	0.30	0.33	0.36	0.39	0.41	0.47
0.15	0.18	0.20	0.27	0.30	0.30	0.34	0.36	0.41
0.14	0.17	0.19	0.24	0.27	0.29	0.32	0.34	0.38
0.13	0.15	0.18	0.24	0.25	0.28	0.32	0.33	0.38
0.11	0.14	0.17	0.22	0.23	0.25	0.29	0.30	0.36
0.09	0.10	0.11	0.14	0.15	0.17	0.18	0.19	0.22
0.08	0.09	0.09	0.11	0.13	0.15	0.17	0.17	0.19
0.09	0.10	0.11	0.15	0.15	0.18	0.19	0.20	0.23
0.08	0.09	0.10	0.13	0.14	0.15	0.18	0.18	0.20
0.09	0.10	0.10	0.11	0.14	0.15	0.17	0.18	0.20
0.08	0.09	0.09	0.10	0.11	0.14	0.15	0.15	0.18

*Special Geometry

6xD

🏝 9xD

12xD

15xD - 20xD

Parameter Reductions for Length to Diameter Relationships

0.90 reduction for speed and feed adjustment

0.80 reduction for speed and feed adjustment

0.70 reduction for speed and feed adjustment

0.60 reduction for speed and feed adjustment

Use HPM2M for greater drill depths over 8xD. HPM2M is used for any interruptions and produces a better hole tolerance and finish in comparison to HPM.

Use HPS2M for greater drill depths over 8xD. HPS2M is used for any interruptions and produces a better hole tolerance and finish in comparison to HPS.

Flood Coolant Applications

Recommend if diameter to depth is less than or equal to three times the diameter. Reduce speed by 20% and if needed drop feed by 10% to maintain optimal chip formation

Parameter Recommendations for Step Drills

- Feed rate is based off the pilot diameter
- Speed rate is based off the largest step diameter

t WARNING Refer to Speed and Feed charts for recommended adjustments to speeds and feeds. Refer to page 196 for deep hole drilling guidelines. Visit www.alliedmachine.com/DeepHoleGuidelines for the most up-to-date information and procedures. Factory technical assistance is available for your specific applications through our Application Engineering Team. *ext*: **7611** | *email:* appeng@alliedmachine.com

							· ·	mm/rev) by neter
ISO	Material	Hardness (BHN)	General Application Geometry	Special Geometry	Coating	Speed (M/min)	3.00 - 4.00	4.00 - 5.00
	Stainless Steel 400 Series	185-275	HPS	A HPS2M	AM460	76	0.10	0.11
	416, 420, etc.	275-350	HPS	A HPS2M	AM460	59	0.09	0.10
м	Stainless Steel 300 Series	135-185	HPS	A HPS2M	AM460	61	0.09	0.10
IVI	304, 316, 17-4PH, etc.	185-275	HPS	A HPS2M	AM460	53	0.08	0.09
	Super Duplex Stainless Steel	135-185	HPS	A HPS2M	AM460	46	0.09	0.10
		185-275	HPS	A HPS2M	AM460	41	0.08	0.09
	Wear Plate	400	HP106	_	AM420	52	0.05	0.05
	Hardox, AR400, T-1, etc.	500	HP106	_	AM420	43	0.05	0.05
н	······································	600	HP106	_	AM420	30	0.05	0.05
	Hardened Steel	300-400	HP106	_	AM420	52	0.05	0.05
		400-500	HP106	-	AM420	43	0.05	0.05
	SG/Nodular Cast Iron	120-150	HPS2M	CIB	AM440	152	0.20	0.22
	-	150-200	HPS2M	CIB	AM440	148	0.18	0.19
		200-220	HPS2M	CIB	AM440	143	0.15	0.18
		220-260	HPS2M	CIB	AM440	139	0.15	0.18
		260-320	HPS2M	🔶 CIB	AM440	127	0.13	0.17
K	Gray/White Cast Iron	120-150	HPS2M	🔶 CIB	AM440	166	0.23	0.24
		150-200	HPS2M	🔶 CIB	AM440	162	0.20	0.22
		200-220	HPS2M	🔶 CIB	AM440	157	0.18	0.20
		220-260	HPS2M	🔶 CIB	AM440	145	0.18	0.20
		260-320	HPS2M	🔶 CIB	AM440	137	0.15	0.19
	Cast Aluminum	30	HPF	🔾 САВ	TiCN	290	0.19	0.22
		180	HPF	ОСАВ	TiCN	230	0.17	0.19
	Wrought Aluminum	30	HPF	∆ WAB	TiCN	335	0.19	0.22
		180	HPF	🛆 WAB	TiCN	290	0.17	0.19
Ν	Aluminum Bronze	100-200	HPM	-	TiCN	113	0.10	0.13
		200-250	HPM	-	TiCN	95	0.09	0.11
	Brass	100	BCB	-	TIN	229	0.13	0.15
	Copper	60	BCB	-	TIN	155	0.05	0.06

*Special Geometry

Use HPS2M for greater drill depths over 8xD. HPS2M is used for any interruptions and produces a better hole tolerance and finish in comparison to HPS.

CIB (Cast Iron Burnish): Unique point, web, and cutting edge designed to significantly improve hole finish and hole tolerance. NOTE: Reduce speed and feed parameters above from 40% - 50% reduction.

CAB (Cast Aluminum Burnish): Unique point, web, and cutting edge designed to significantly improve hole finish and hole tolerance. NOTE: Reduce speed and feed parameters above from 40% - 50% reduction.

 Δ WAB (Wrought Aluminum Burnish): Unique point, web, and cutting edge designed to significantly improve hole finish and hole tolerance.

NOTE: Reduce speed and feed parameters above from 40% - 50% reduction.

Parameter Reductions for Length to Diameter Relationships						
6xD	0.90 reduction for speed and feed adjustment					
<u> </u>	0.80 reduction for speed and feed adjustment					
<u> </u>	0.70 reduction for speed and feed adjustment					
15xD - 20xD	0.60 reduction for speed and feed adjustment					

Flood Coolant Applications

Recommend if diameter to depth is less than or equal to three times the diameter. Reduce speed by 20% and if needed drop feed by 10% to maintain optimal chip formation

Parameter Recommendations for Step Drills

- Feed rate is based off the pilot diameter
- Speed rate is based off the largest step diameter

1. WARNING Refer to Speed and Feed charts for recommended adjustments to speeds and feeds. Refer to page 196 for deep hole drilling guidelines. Visit www.alliedmachine.com/DeepHoleGuidelines for the most up-to-date information and procedures. Factory technical assistance is available for your specific applications through our Application Engineering Team. *ext:* 7611 | *email:* appeng@alliedmachine.com

			Feed Ra	ite (mm/rev) by D	iameter			
5.00 - 6.00	6.00 - 7.00	7.00 - 8.00	8.00 - 10.00	10.00 - 12.00	12.00- 14.00	14.00 - 16.00	16.00 - 18.00	18.00 - 20.00
0.14	0.17	0.19	0.23	0.24	0.25	0.28	0.28	0.30
0.11	0.14	0.17	0.20	0.22	0.24	0.25	0.25	0.28
0.11	0.13	0.15	0.18	0.19	0.20	0.23	0.24	0.27
0.10	0.10	0.13	0.15	0.17	0.18	0.20	0.20	0.23
0.11	0.13	0.15	0.18	0.18	0.19	0.19	0.20	0.22
0.10	0.10	0.11	0.14	0.14	0.17	0.17	0.18	0.18
0.05	0.08	0.08	0.10	0.13	0.14	0.18	0.20	0.23
0.05	0.08	0.08	0.10	0.10	0.11	0.15	0.18	0.20
0.05	0.08	0.08	0.10	0.10	0.11	0.15	0.18	0.20
0.05	0.08	0.08	0.10	0.13	0.14	0.18	0.20	0.23
0.05	0.08	0.08	0.10	0.10	0.11	0.15	0.18	0.20
0.23	0.28	0.30	0.36	0.39	0.43	0.47	0.52	0.56
0.22	0.25	0.29	0.33	0.36	0.39	0.42	0.47	0.53
0.20	0.23	0.28	0.30	0.33	0.36	0.38	0.43	0.47
0.20	0.23	0.28	0.30	0.33	0.36	0.38	0.43	0.47
0.19	0.22	0.25	0.29	0.32	0.34	0.37	0.39	0.43
0.25	0.30	0.33	0.39	0.42	0.47	0.51	0.56	0.61
0.24	0.28	0.32	0.37	0.39	0.42	0.44	0.50	0.56
0.23	0.25	0.30	0.33	0.36	0.38	0.41	0.46	0.51
0.23	0.25	0.30	0.33	0.36	0.38	0.41	0.46	0.51
0.22	0.24	0.29	0.32	0.34	0.37	0.39	0.42	0.48
0.23	0.25	0.32	0.37	0.41	0.46	0.50	0.51	0.56
0.22	0.23	0.29	0.34	0.39	0.43	0.47	0.48	0.53
0.24	0.28	0.32	0.37	0.43	0.47	0.51	0.53	0.58
0.22	0.25	0.29	0.34	0.39	0.44	0.48	0.51	0.56
0.15	0.18	0.20	0.23	0.25	0.30	0.33	0.36	0.38
0.13	0.15	0.17	0.18	0.20	0.25	0.28	0.30	0.36
0.18	0.23	0.25	0.29	0.32	0.36	0.41	0.43	0.46
0.08	0.08	0.08	0.10	0.10	0.10	0.13	0.15	0.18

*Special Geometry

Use HPS2M for greater drill depths over 8xD. HPS2M is used for any interruptions and produces a better hole tolerance and finish in comparison to HPS.

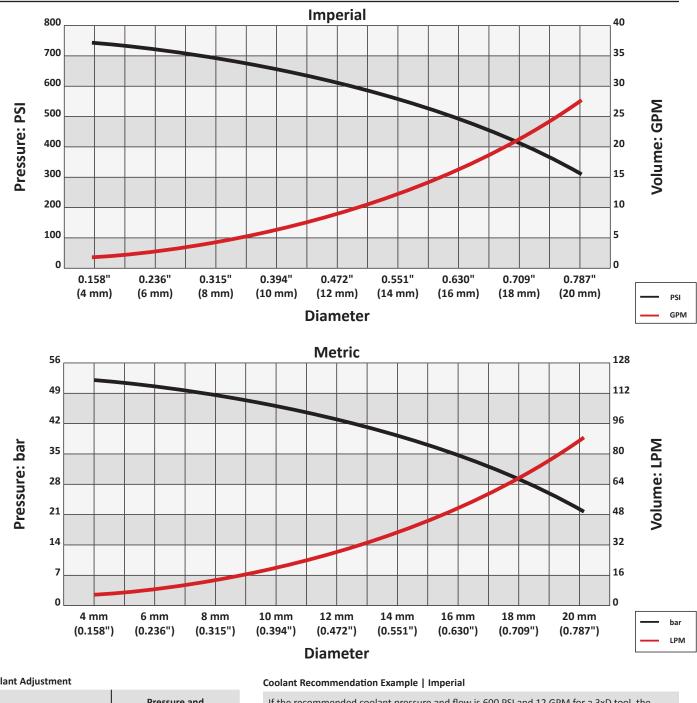
CIB (Cast Iron Burnish): Unique point, web, and cutting edge designed to significantly improve hole finish and hole tolerance. NOTE: Reduce speed and feed parameters above from 40% - 50% reduction.

CAB (Cast Aluminum Burnish): Unique point, web, and cutting edge designed to significantly improve hole finish and hole tolerance. NOTE: Reduce speed and feed parameters above from 40% - 50% reduction.

WAB (Wrought Aluminum Burnish): Unique point, web, and cutting edge designed to significantly improve hole finish and hole tolerance. **NOTE:** Reduce speed and feed parameters above from 40% - 50% reduction.

Parameter Reductions	for Length to Diameter	Relationships
----------------------	------------------------	---------------

6xD	0.90 reduction for speed and feed adjustment
<u></u>	0.80 reduction for speed and feed adjustment
<u> </u>	0.70 reduction for speed and feed adjustment
🛝 15xD - 20xD	0.60 reduction for speed and feed adjustment


Flood Coolant Applications

Recommend if diameter to depth is less than or equal to three times the diameter. Reduce speed by 20% and if needed drop feed by 10% to maintain optimal chip formation

Parameter Recommendations for Step Drills

- Feed rate is based off the pilot diameter
- Speed rate is based off the largest step diameter

1 WARNING Refer to Speed and Feed charts for recommended adjustments to speeds and feeds. Refer to page 196 for deep hole drilling guidelines. Visit www.alliedmachine.com/DeepHoleGuidelines for the most up-to-date information and procedures. Factory technical assistance is available for your specific applications through our Application Engineering Team. *ext:* 7611 | *email:* appeng@alliedmachine.com

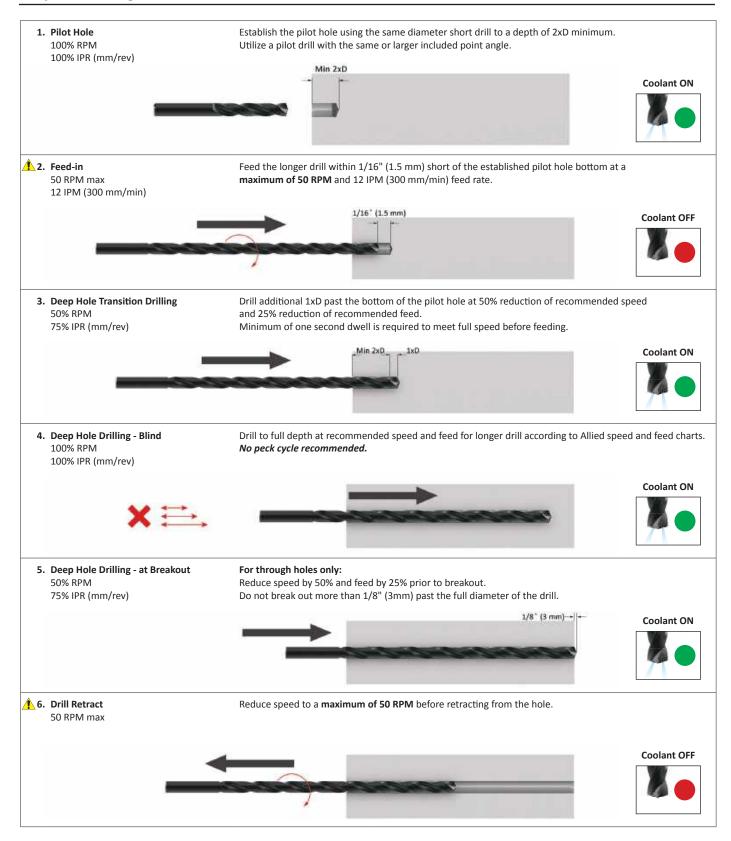
Coolant Recommendations

Coolant Adjustment

Drill Length	Pressure and Flow Multiplier
Up to 6xD	See above chart
>6 - 9xD	1.2
▲ >9 - 12xD	1.4
⊥ >12 - 15xD	1.6
<u>∧</u> >15 - 20xD	2
	n

If the recommended coolant pressure and flow is 600 PSI and 12 GPM for a 3xD tool, the adjusted pressure and flow for a 9xD tool would be:										
600 x 1.2 = 720 PSI	12 x 1.2 = 14.4 GPM									
Coolant Recommendation Example Metric										
If the recommended coolant pressure and flow is 42 bar and 32 LPM for a 3xD tool, the adjusted pressure and flow for a 9xD tool would be:										
42 x 1.2 = 50.4 bar	32 x 1.2 = 38.4 LPM									

1. WARNING Refer to Speed and Feed charts for recommended adjustments to speeds and feeds. Refer to page 196 for deep hole drilling guidelines. Visit www.alliedmachine.com/DeepHoleGuidelines for the most up-to-date information and procedures. Factory technical assistance is available for your specific applications through our Application Engineering Team. ext: 7611 | email: appeng@alliedmachine.com


NOTES:

• Coolant must have proper additives to prevent excessive foaming during drilling cycle.

• Positive displacement coolant pump is recommended to maintain coolant flow at recommended values.

• The coolant filter must be less than 5 microns. Fine filtration is necessary to prevent blockage of the smaller coolant holes of the solid carbide tool.

Deep Hole Drilling Guidelines

1. WARNING Tool failure can cause serious injury. To prevent:

- When using Superion drills greater than 9xD without support bushing, use a short Superion drill to establish an initial hole that is a minimum of 2 diameters deep.

- Do not rotate drills more than 50 RPM unless it is engaged with the workpiece or fixture.

Visit www.alliedmachine.com/DeepHoleGuidelines for the most up-to-date information and procedures.

Factory technical assistance is available for your specific applications through our Application Engineering department. ext: 7611 | email: appeng@alliedmachine.com

Troubleshooting Guide

			Incre	ease	Decr	ease	Incre	ease	Use	Change	Align /
Problem	Condition	Shorten Flute Length	Feed Rate ^G	Speed ^G	Feed Rate ^{A G}	Speed ^G	Coolant Pressure	Coolant Flow	Through Tool Coolant ^B	Point Angle	Repair Spindle
	Lack of Drill Rigidity	0									
e	Improper Cutting Parameters		•		•	•					
Decrease Tool Life	Excessive Margin Wear					•	0	0	0		•
se Tc	Cutting Edge Chipping				•						•
ecrea	Chattering/Vibration	0	•			0					•
ă	Built-up Edge ^D					•	0	0	•		
	Chipping of Point				•	•				0	•
on <mark>c</mark>	Long Chips		•			•	0	0			
Poor Chip Evacuation ^C	Chip Packing				•	•	•	0	•		
Po Evai	Blue Chips				•	•	•	٠	•		
	Workpiece Deflection				•					0	
Ę	Bell Mouth	0	•			•				0	
Hole Form	Oversized Hole	0		٠	•						٠
우	Undersized Hole		•			•	•	•			
	Hole Leadoff	0			•	0				0	٠
	Workpiece Burning				•	•	•	٠	•		
nce	Tool Deflection	0			•	•				0	•
Performance	Harder Materials				•	•			•		
Perfi	Retract Spiral	•			•	٠					•
	Exit Burr			٠	•					0	

•: Primary solution O: Secondary solution

A: Do not reduce feed rates below threshold of good chip form

B: Run coolant through tool when drilling greater than 3xD.

C: Add peck cycle to help clear chips

D: Ensure coolant quality with regular maintenance free of swarf

G: Refer to speed and feed chart

IMPORTANT: Factory technical assistance is available for your specific applications through our Application Engineering department. ext: 7611 | email: appeng@alliedmachine.com

Troubleshooting Guide

Problem	Condition	Different Coating	Different Geometry	Tool Clamping	Workpiece Fixturing	Regrind/ Recondition	Check Tool Diameter	Entry Speed & Feed ^E	TIR Verification ^F	Exit Speed & Feed
	Lack of Drill Rigidity			•	•					
e	Improper Cutting Parameters									
Decrease Tool Life	Excessive Margin Wear	0		•	•	0				
ise Tc	Cutting Edge Chipping		0	•	•	0				
ecrea	Chattering/Vibration			•	•					
ā	Built up Edge ^D	0	0							
	Chipping of Point		0	•	•	0				
Poor Chip Evacuation ^C	Long Chips		0							
Poor Chip Evacuation ^C	Chip Packing		0							
Po	Blue Chips									
	Workpiece Deflection		0		•					
E	Bell Mouth			•	•			•		
Hole Form	Oversized Hole			•	•	0			•	
Ч	Undersized Hole					•	•		•	
	Hole Lead Off		0	•	•	0		•	•	
	Workpiece Burning									
nce	Tool Deflection		0	•	•			•	0	
Performance	Harder Materials	0	0							
Perfe	Retract Spiral		0	•					•	•
	Exit Burr		0							

•: Primary solution

O: Secondary solution

C: Add peck cycle to help clear chips

D: Ensure coolant quality with regular maintenance free of swarf

E: Reduce entry speed and feed parameters 20%

F: TIR range of 0.000"-0.001" (prefer 0.0000"-0.0005")

Speed and Feed Reduction Table												
	Interru	ptions:										
Condition	Reductio	n Speed	Reduction Feed									
Small Cross Hole (C.H)	0.9	90	0.85									
Large Cross Hole(C.H)	0.7	75	0.70									
Incline Angle Entry(I.A)	0.8	30	0.75									
I.A + C.H	0.7	70	0.65									
Coolant Type:												
Condition	Reductio	n Speed	Reduction Feed									
**Flood	See N	lote	See Note									
Dry	0.5	50	0.50									
Mist	0.7	70	0.85									
	Mac	hine:										
Machine Type	Reductio	n Speed	Reduction Feed									
Lathe	0.9	90	0.85									
	Depth	Ratio:										
Condition	Reductio	n Speed	Reduction Feed									
6xD	0.9	90	0.90									
9xD	0.8	30	0.80									
12xD	0.7	70	0.70									
15-20xD 0.60 0.60												
Example: If the recommended speed and feed is 365 SFM and 0.010 IPR for a 0.276" - 0.315" diameter drill at 12xD, the speed and feed would be 255 SFM & 0.007 IPR.												
365 SFM x 0.70 = 255 SFM 0.010 IPR x 0.70 = 0.007 IPR												

****Flood coolant applications**: Recommend if diameter to depth is less than or equal to 3xD. Reduce speed by 20% and if needed, drop feed by 10% to maintain optimal chip formation.

IMPORTANT: Factory technical assistance is available for your specific applications through our Application Engineering department. ext: **7611** | email: appeng@alliedmachine.com

Notes

-														

Notes

Guaranteed Test / Demo Application Form

Distributor PO #

The following must be filled out completely before your test will be considered.

IMPORTAN	T: For processin	g, send pur	chase or	der to your Allied F	ield Sales Engi	neer (FSE). Pl	ease clearly	mark the paper	work as "Test Order."
Distributor I Company Name Contact: Account Numbe Phone: Email: Current Proc	er:			ites, speeds and feed	Compan Contact: Industry Phone: Email:				
Test Objectiv	/e List what v	vould make	this a suc	cessful test (i.e. pene	etration rate, fini	sh, tool life, h	ble size, etc.).		
Application	Information								
Hole Diamete	er:	ir	n/mm	Tolerance:			Material:	(4150_A	36, cast iron, etc.)
Preexisting Di	iameter:	ir	n/mm	Depth of Cut:		in/mm	Hardness:		
Required Fini	sh·	R	MS				State:	(BHN, Rc)
nequireu mi							State.	(Casting, H	not rolled, forging)
Machine Inf	ormation								
Machine Type		v machine, ma	achine cen		er:(Haa	s, Mori Seiki, etc	.)	Model #:	
Shank Requir	ed:(C/	AT50, Morse ta	aper. etc.)					Power:	HP/KW
Rigidity:	Orient	ation:	Toc	l Rotating: Yes				Thrust:	lbs/N
Good	🗌 Ho	rizontal		No					
Coolant Info	rmation								
Coolant Deliv	ery:	(Th	rough tool		Cool	ant Pressure:			PSI / bar
Coolant Type:		Air mist, oil, sy	ynthetic, w	vater soluble, etc.)	Cool	ant Volume:			GPM / LPM
Requested T	ooling					_		M ALLI	<mark>ED MACHIN</mark> Gineerin
QTY Item N	umber		QTY	Item Number			Q	6 E N	GINEERIN
								Allie	d Machine & Engineeri 120 Deeds Dri Dover, OH 446
								Toll Free USA &	lephone: (330) 343-42 Canada: (800) 321-55 info@alliedmachine.cc

Warranty Information

Allied Machine & Engineering ("Allied Machine") warrants to original equipment manufacturers, distributors, industrial and commercial users of its products for one year from the original date of sale that each new product manufactured or supplied by Allied Machine shall be free from defects in material and workmanship.

Allied Machine's sole and exclusive obligation under this warranty is limited to, at its option, without additional charge, replacing or repairing this product or issuing a credit. For this warranty to be applied, the product must be returned freight prepaid to the plant designated by an Allied Machine representative and which, upon inspection, is determined by Allied Machine to be defective in material and workmanship.

Complete information as to operating conditions, machine, setup, and the application of cutting fluid should accompany any product returned for inspection. This warranty shall not apply to any Allied Machine products which have been subjected to misuse, abuse, improper operating conditions, improper machine setup or improper application of cutting fluid or which have been repaired or altered if such repair or alteration, in the judgement of Allied Machine, would adversely affect the performance of the product.

THIS WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Allied Machine shall have no liability or responsibility for any claim, whether in contract, tort or otherwise, for any loss or damage arising out of, connected with, or resulting from the manufacture, sale, delivery or use of any product sold hereunder, in excess of the cost of replacement or repair as provided herein.

Allied Machine shall not be liable in contract or in tort (including, without limitation, negligence, strict liability or otherwise) for economic losses of any kind or for any special, incidental, indirect, consequential, punitive or exemplary damages arising in any way out of the performance of, or failure to perform this agreement.

ALL PRICES, DELIVERIES, DESIGNS, AND MATERIALS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

Wohlhaupter GmbH is

egistered to ISO 9001:2015

by QUACERT.

Allied Machine & Engineering is registered to ISO 9001:2015 by DQS. Allied Machine & Engineering Co. Europe Ltd. is registered to ISO 9001:2015 by bsi.

United States

Allied Machine & Engineering 120 Deeds Drive Dover OH 44622 United States **Phone:** +1.330.343.4283

Toll Free USA and Canada: 800.321.5537

Toll Free USA and Canada: 800.223.5140

Allied Machine & Engineering 485 W Third Street Dover OH 44622 United States **Phone:** +1.330.343.4283

Phone:

Phone:

Toll Free USA and Canada: 800.321.5537

Europe

Allied Machine & Engineering Co. (Europe) Ltd 93 Vantage Point Pensnett Estate Kingswinford West Midlands DY6 7FR England

Wohlhaupter® GmbH Maybachstrasse 4

Maybachstrasse 4 Postfach 1264 72636 Frickenhausen Germany +49 (0) 7022 408-0

+44 (0) 1384 400 900

Asia

Wohlhaupter® India Pvt. Ltd. B-23, 3rd Floor B Block Community Centre Janakpuri, New Delhi - 110058 India **Phone:** +91 (0) 11.41827044

Your local Allied Machine representative:

www.alliedmachine.com

Allied Machine & Engineering is registered to **ISO 9001:2015** by DQS. Wohlhaupter GmbH is registered to **ISO 9001:2015** by QUACERT. Allied Machine & Engineering Co. (Europe) Ltd is registered to **ISO 9001:2015** by bsi.

Copyright © 2025 Allied Machine and Engineering Corp. – All rights reserved. All trademarks designated with the ® symbol are registered in the United States and other countries. Literature Order Number: TG-SFC Publish Date: March 2025